A survey of compositional inverses of permutation polynomials over finite fields

被引:1
|
作者
Wang, Qiang [1 ]
机构
[1] Carleton Univ, Sch Math & Stat, 1125 Colonel Dr, Ottawa, ON K1S 5B6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Permutation polynomial; Compositional inverse; The AGW criterion; LINEARIZED POLYNOMIALS; BENT FUNCTIONS; FORM (X(PM); CONSTRUCTIONS; INVOLUTIONS; TRINOMIALS; F-2N;
D O I
10.1007/s10623-024-01436-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we survey on the recent results and methods in the study of compositional inverses of permutation polynomials over finite fields. In particular, we describe a framework in terms of a commutative diagram which unifies several recent methods in finding the inverses of permutation polynomials.
引用
收藏
页码:831 / 870
页数:40
相关论文
共 50 条
  • [21] Further results on permutation polynomials and complete permutation polynomials over finite fields
    Liu, Qian
    Xie, Jianrui
    Liu, Ximeng
    Zou, Jian
    AIMS MATHEMATICS, 2021, 6 (12): : 13503 - 13514
  • [22] The compositional inverse of a class of permutation polynomials over a finite field
    Coulter, RS
    Henderson, M
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 65 (03) : 521 - 526
  • [23] Permutation polynomials over finite fields providing involutions
    Kevinsam, B.
    Vanchinathan, P.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [24] Some generalized permutation polynomials over finite fields
    Qin, Xiaoer
    Yan, Li
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2021, 64 (01): : 75 - 87
  • [25] GENERATORS FOR GROUPS OF PERMUTATION POLYNOMIALS OVER FINITE FIELDS
    WELLS, C
    ACTA SCIENTIARUM MATHEMATICARUM, 1968, 29 (1-2): : 167 - &
  • [26] Two classes of permutation polynomials over finite fields
    Zha, Zhengbang
    Hu, Lei
    FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (04) : 781 - 790
  • [27] PERMUTATION POLYNOMIALS IN SEVERAL VARIABLES OVER FINITE FIELDS
    NIEDERREITER, H
    PROCEEDINGS OF THE JAPAN ACADEMY, 1970, 46 (10): : 1001 - +
  • [28] Further results on permutation polynomials over finite fields
    Yuan, Pingzhi
    Ding, Cunsheng
    FINITE FIELDS AND THEIR APPLICATIONS, 2014, 27 : 88 - 103
  • [29] Enumerating permutation polynomials over finite fields by degree
    Konyagin, S
    Pappalardi, F
    FINITE FIELDS AND THEIR APPLICATIONS, 2002, 8 (04) : 548 - 553
  • [30] A piecewise construction of permutation polynomials over finite fields
    Fernando, Neranga
    Hou, Xiang-dong
    FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (06) : 1184 - 1194