The distribution of Fourier coefficients of symmetric square L-functions over arithmetic progressions

被引:0
|
作者
Wang, Dan [1 ]
机构
[1] Qilu Univ Technol, Shandong Acad Sci, Sch Math & Stat, Jinan 250353, Shandong, Peoples R China
关键词
Fourier coefficients; Arithmetic progression; Cusp forms; EULER PRODUCTS; CLASSIFICATION; SUMS;
D O I
10.1007/s13226-024-00628-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L(s, sym2 f) be the corresponding symmetric square L-function associated to f ( z), where f (z) is a primitive holomorphic cusp form of even integral weight k for the full modular group. Suppose that.sym2 f (n) is the nth normalized Fourier coefficient of L(s, sym2 f). In this paper, we use the function equation and the large sieve inequality to study the asymptotic behaviour of the sums nx n=a(mod q). j sym2 f (n), 2 j 4.
引用
收藏
页数:13
相关论文
共 50 条