Deep Multi-View Subspace Clustering with Anchor Graph

被引:0
|
作者
Cui, Chenhang [1 ]
Ren, Yazhou [1 ,2 ]
Pu, Jingyu [1 ]
Pu, Xiaorong [1 ,2 ]
He, Lifang [3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu, Peoples R China
[2] Univ Elect Sci & Technol China, Shenzhen Inst Adv Study, Shenzhen, Peoples R China
[3] Lehigh Univ, Dept Comp Sci & Engn, Bethlehem, PA USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep multi-view subspace clustering (DMVSC) has recently attracted increasing attention due to its promising performance. However, existing DMVSC methods still have two issues: (1) they mainly focus on using autoencoders to nonlinearly embed the data, while the embedding may be sub-optimal for clustering because the clustering objec-tive is rarely considered in autoencoders, and (2) they typically have a quadratic or even cubic complexity, which makes it challenging to deal with large-scale data. To address these issues, in this paper we propose a novel deep multi-view subspace clustering method with anchor graph (DMCAG). To be specific, DMCAG firstly learns the embedded features for each view independently, which are used to obtain the subspace representations. To significantly reduce the complexity, we construct an anchor graph with small size for each view. Then, spectral clustering is performed on an integrated anchor graph to obtain pseudo-labels. To overcome the negative impact caused by suboptimal embedded features, we use pseudo-labels to refine the embedding process to make it more suitable for the clustering task. Pseudo-labels and embedded features are updated alternately. Furthermore, we design a strategy to keep the consistency of the labels based on contrastive learning to enhance the clustering performance. Empirical studies on real-world datasets show that our method achieves superior clustering performance over other state-of-the-art methods.
引用
收藏
页码:3577 / 3585
页数:9
相关论文
共 50 条
  • [41] Multi-View MERA Subspace Clustering
    Long, Zhen
    Zhu, Ce
    Chen, Jie
    Li, Zihan
    Ren, Yazhou
    Liu, Yipeng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 3102 - 3112
  • [42] Adaptive Multi-View Subspace Clustering
    Tang Q.
    Zhang Y.
    He S.
    Zhou Z.
    Zhang, Yulong, 1600, Xi'an Jiaotong University (55): : 102 - 112
  • [43] Sketched multi-view subspace clustering
    Kadambari, Sai Kiran
    Chepuri, Sundeep Prabhakar
    SIGNAL PROCESSING, 2025, 234
  • [44] Partial Multi-view Subspace Clustering
    Xu, Nan
    Guo, Yanqing
    Zheng, Xin
    Wang, Qianyu
    Luo, Xiangyang
    PROCEEDINGS OF THE 2018 ACM MULTIMEDIA CONFERENCE (MM'18), 2018, : 1794 - 1801
  • [45] Sequential multi-view subspace clustering
    Lei, Fangyuan
    Li, Qin
    NEURAL NETWORKS, 2022, 155 : 475 - 486
  • [46] Scalable Multi-View Graph Clustering With Cross-View Corresponding Anchor Alignment
    Wang, Siwei
    Liu, Xinwang
    Liao, Qing
    Wen, Yi
    Zhu, En
    He, Kunlun
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2025, 37 (05) : 2932 - 2945
  • [47] Multi-view Fractional Deep Canonical Correlation Analysis for Subspace Clustering
    Sun, Chao
    Yuan, Yun-Hao
    Li, Yun
    Qiang, Jipeng
    Zhu, Yi
    Shen, Xiaobo
    NEURAL INFORMATION PROCESSING, ICONIP 2021, PT II, 2021, 13109 : 206 - 215
  • [48] DEEP MULTI-VIEW SUBSPACE CLUSTERING BASED ON INTACT SPACE LEARNING
    Duan, Yi Qiang
    Yuan, Hao Liang
    Yin, Ming
    Lai, Loi Lei
    PROCEEDINGS OF 2021 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2021, : 66 - 71
  • [49] Deep low-rank subspace ensemble for multi-view clustering
    Xue, Zhe
    Du, Junping
    Du, Dawei
    Lyu, Siwei
    INFORMATION SCIENCES, 2019, 482 : 210 - 227
  • [50] Fast Parameter-Free Multi-View Subspace Clustering With Consensus Anchor Guidance
    Wang, Siwei
    Liu, Xinwang
    Zhu, Xinzhong
    Zhang, Pei
    Zhang, Yi
    Gao, Feng
    Zhu, En
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 556 - 568