Phase-field modeling of fracture with physics-informed deep learning

被引:7
|
作者
Manav, M. [1 ]
Molinaro, R. [2 ]
Mishra, S. [2 ]
De Lorenzis, L. [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Mech & Proc Engn, Tannenstr 3, CH-8092 Zurich, Switzerland
[2] Swiss Fed Inst Technol, Dept Math, Seminar Appl Math, Ramistr 101, CH-8092 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
Phase-field fracture; Physics-informed machine learning; Deep Ritz method; Non-convex optimization; Crack nucleation; Crack propagation; BRITTLE-FRACTURE; NEURAL-NETWORKS; FRAMEWORK; ALGORITHM;
D O I
10.1016/j.cma.2024.117104
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We explore the potential of the deep Ritz method to learn complex fracture processes such as quasistatic crack nucleation, propagation, kinking, branching, and coalescence within the unified variational framework of phase -field modeling of brittle fracture. We elucidate the challenges related to the neural -network -based approximation of the energy landscape, and the ability of an optimization approach to reach the correct energy minimum, and we discuss the choices in the construction and training of the neural network which prove to be critical to accurately and efficiently capture all the relevant fracture phenomena. The developed method is applied to several benchmark problems and the results are shown to be in qualitative and quantitative agreement with the finite element solution. The robustness of the approach is tested by using neural networks with different initializations.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Physics-informed deep generative learning for quantitative assessment of the retina
    Brown, Emmeline E.
    Guy, Andrew A.
    Holroyd, Natalie A.
    Sweeney, Paul W.
    Gourmet, Lucie
    Coleman, Hannah
    Walsh, Claire
    Markaki, Athina E.
    Shipley, Rebecca
    Rajendram, Ranjan
    Walker-Samuel, Simon
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [42] Towards physics-informed deep learning for turbulent flow prediction
    Wang, Rui
    Kashinath, Karthik
    Mustafa, Mustafa
    Albert, Adrian
    Yu, Rose
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 1457 - 1466
  • [43] A Framework for Physics-Informed Deep Learning Over Freeform Domains
    Mezzadri, Francesco
    Gasick, Joshua
    Qian, Xiaoping
    COMPUTER-AIDED DESIGN, 2023, 160
  • [44] Physics-informed deep learning for one-dimensional consolidation
    Bekele, Yared W.
    JOURNAL OF ROCK MECHANICS AND GEOTECHNICAL ENGINEERING, 2021, 13 (02) : 420 - 430
  • [45] A physics-informed deep learning approach for bearing fault detection
    Shen, Sheng
    Lu, Hao
    Sadoughi, Mohammadkazem
    Hu, Chao
    Nemani, Venkat
    Thelen, Adam
    Webster, Keith
    Darr, Matthew
    Sidon, Jeff
    Kenny, Shawn
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2021, 103
  • [46] Phase-field modeling of ductile fracture
    M. Ambati
    T. Gerasimov
    L. De Lorenzis
    Computational Mechanics, 2015, 55 : 1017 - 1040
  • [47] Phase-field modeling of ductile fracture
    Ambati, M.
    Gerasimov, T.
    De Lorenzis, L.
    COMPUTATIONAL MECHANICS, 2015, 55 (05) : 1017 - 1040
  • [48] Phase-field modeling of hydraulic fracture
    Wilson, Zachary A.
    Landis, Chad M.
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2016, 96 : 264 - 290
  • [49] Phase-field modeling of fracture in liquid
    Levitas, Valery I.
    Idesman, Alexander V.
    Palakala, Ameeth K.
    JOURNAL OF APPLIED PHYSICS, 2011, 110 (03)
  • [50] Physics-Informed Machine Learning for Modeling and Control of Dynamical Systems
    Nghiem, Truong X.
    Drgona, Jan
    Jones, Colin
    Nagy, Zoltan
    Schwan, Roland
    Dey, Biswadip
    Chakrabarty, Ankush
    Di Cairano, Stefano
    Paulson, Joel A.
    Carron, Andrea
    Zeilinger, Melanie N.
    Cortez, Wenceslao Shaw
    Vrabie, Draguna L.
    2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 3735 - 3750