BOUNDEDNESS CRITERIA FOR LINEAR AND MULTILINEAR FRACTIONAL INTEGRAL OPERATORS IN LORENTZ SPACES

被引:0
|
作者
Meskhi, Alexander [1 ,2 ]
Natelashvili, Lazare [3 ]
机构
[1] Javakhishvili Tbilisi State Univ, A Razmadze Math Inst 1, 2 Merab Aleksidze II Lane, Tbilisi 0193, Georgia
[2] Kutaisi Int Univ, Youth Ave,Turn 5-7, GA-4600 Kutaisi, Georgia
[3] Georgian Tech Univ, Dept Math, Fsc Informat & Control Syst, 77 Kostava Str, Tbilisi 0171, Georgia
关键词
Lorentz spaces; Multilinear fractional integral operator; Non-doubling measure; Growth condition;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we give necessary and sufficient condition on a measure mu guaranteeing the boundedness of the multilinear fractional integral operator T gamma m ,mu defined with respect to mu from the product of Lorentz spaces Pi(m)(k =1) L (R) k(,s)k(mu, X)(R) k(,s)k (mu, X ) to the Lorentz space L-p,L-q(mu, X-p,X- q (mu, X ). The result is new even for linear fractional integrals (gamma ,mu) (i.e., when m = 1). From the general results we have a criterion for the validity of Sobolev-type inequality in Lorentz spaces defined for non-doubling measures.
引用
收藏
页码:331 / 333
页数:3
相关论文
共 50 条