BOUNDEDNESS CRITERIA FOR LINEAR AND MULTILINEAR FRACTIONAL INTEGRAL OPERATORS IN LORENTZ SPACES

被引:0
|
作者
Meskhi, Alexander [1 ,2 ]
Natelashvili, Lazare [3 ]
机构
[1] Javakhishvili Tbilisi State Univ, A Razmadze Math Inst 1, 2 Merab Aleksidze II Lane, Tbilisi 0193, Georgia
[2] Kutaisi Int Univ, Youth Ave,Turn 5-7, GA-4600 Kutaisi, Georgia
[3] Georgian Tech Univ, Dept Math, Fsc Informat & Control Syst, 77 Kostava Str, Tbilisi 0171, Georgia
关键词
Lorentz spaces; Multilinear fractional integral operator; Non-doubling measure; Growth condition;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we give necessary and sufficient condition on a measure mu guaranteeing the boundedness of the multilinear fractional integral operator T gamma m ,mu defined with respect to mu from the product of Lorentz spaces Pi(m)(k =1) L (R) k(,s)k(mu, X)(R) k(,s)k (mu, X ) to the Lorentz space L-p,L-q(mu, X-p,X- q (mu, X ). The result is new even for linear fractional integrals (gamma ,mu) (i.e., when m = 1). From the general results we have a criterion for the validity of Sobolev-type inequality in Lorentz spaces defined for non-doubling measures.
引用
收藏
页码:331 / 333
页数:3
相关论文
共 50 条
  • [1] Boundedness for multilinear fractional integral operators on Herz type spaces
    Yan-long Shi
    Xiang-xing Tao
    Applied Mathematics-A Journal of Chinese Universities, 2008, 23 : 437 - 446
  • [2] Boundedness for multilinear fractional integral operators on Herz type spaces
    SHI Yan-long TAO Xiang-xing Dept.of Math.
    AppliedMathematics:AJournalofChineseUniversities(SeriesB), 2008, (04) : 437 - 446
  • [3] Boundedness for multilinear fractional integral operators on Herz type spaces
    Shi Yan-long
    Tao Xiang-xing
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2008, 23 (04) : 437 - 446
  • [4] On the boundedness of the multilinear fractional integral operators
    Kokilashvili, Vakhtang
    Mastylo, Mieczyslaw
    Meskhi, Alexander
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 94 : 142 - 147
  • [5] On the Boundedness of Multilinear Fractional Integral Operators
    Kokilashvili, Vakhtang
    Mastylo, Mieczyslaw
    Meskhi, Alexander
    JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (01) : 667 - 679
  • [6] On the Boundedness of Multilinear Fractional Integral Operators
    Vakhtang Kokilashvili
    Mieczysław Mastyło
    Alexander Meskhi
    The Journal of Geometric Analysis, 2020, 30 : 667 - 679
  • [7] Boundedness of rough fractional multilinear integral operators on generalized Morrey spaces
    Akbulut, Ali
    Hamzayev, Vugar H
    Safarov, Zaman V
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [8] BOUNDEDNESS OF THE MULTILINEAR FRACTIONAL INTEGRAL OPERATORS WITH ROUGH KERNEL ON MORREY SPACES
    Guliyev, Emin V.
    Hasanov, Amil A.
    Safarov, Zaman V.
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2015, 41 (01): : 44 - 55
  • [9] Boundedness of rough fractional multilinear integral operators on generalized Morrey spaces
    Ali Akbulut
    Vugar H Hamzayev
    Zaman V Safarov
    Journal of Inequalities and Applications, 2015
  • [10] Boundedness for Multilinear Singular Integral Operators on Morrey Spaces
    Liu, Lanzhe
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2010, 33 (01) : 93 - 103