Automatic Modulation Classification for MIMO System Based on the Mutual Information Feature Extraction

被引:0
|
作者
Ussipov, N. [1 ]
Akhtanov, S. [1 ]
Zhanabaev, Z. [1 ]
Turlykozhayeva, D. [1 ]
Karibayev, B. [2 ]
Namazbayev, T. [1 ]
Almen, D. [1 ]
Akhmetali, A. [1 ]
Tang, Xiao [3 ]
机构
[1] Al Farabi Kazakh Natl Univ, Fac Phys & Technol, Alma Ata 050040, Kazakhstan
[2] Almaty Univ Power Engn & Telecommun, Dept Telecommun Engn, Alma Ata 050013, Kazakhstan
[3] Northwestern Polytechin Univ, Sch Elect & Informat, Xian 710071, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Automatic modulation classification; classifier; feature extraction; mutual information; entropy; complex MIMO signals; RECOGNITION;
D O I
10.1109/ACCESS.2024.3400448
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Automatic Modulation Classification (AMC) is an essential technology that is widely applied into various communications scenarios. In recent years, many Machine Learning and Deep-Learning methods have been introduced into AMC, and a lot of them apply different approaches to eliminate interference in complex Multiple-Input and Multiple-Output (MIMO) signals and improve classification performance. However, in practical communication systems, the perfect elimination of MIMO signal interference is impossible, and therefore classification performance suffers. In this paper, we propose a new AMC algorithm for MIMO system based on mutual information (MI) features extraction, which does not require a large amount of training data and the elimination of MIMO signal interference. In this approach, features based on mutual information are extracted using In-Phase and Quadrature (IQ) constellation diagrams of MIMO signals, which have not been explored previously. Our method can be effective since mutual information considers the interdependencies among variables and measures how much information about one variable reduces uncertainty about another, providing a valuable perspective for extracting higher-level and interesting features from the data. The effectiveness of our method is evaluated on several model and real-world datasets, and its applicability is proven.
引用
收藏
页码:68463 / 68470
页数:8
相关论文
共 50 条
  • [21] Feature selection algorithm for text classification based on improved mutual information
    丛帅
    张积宾
    徐志明
    王宇颖
    Journal of Harbin Institute of Technology(New series), 2011, (03) : 144 - 148
  • [22] A Mutual Information Based Approach for Feature Subset Selection and Image Classification
    Purushottam Das
    Dinesh C. Dobhal
    SN Computer Science, 6 (4)
  • [23] A Fuzzy Mutual Information-based Feature Selection Method for Classification
    Hogue, N.
    Ahmed, H. A.
    Bhattacharyya, D. K.
    Kalita, J. K.
    FUZZY INFORMATION AND ENGINEERING, 2016, 8 (03) : 355 - 384
  • [24] Mutual Information-Based Feature Selection and Ensemble Learning for Classification
    Qi, Chengming
    Zhou, Zhangbing
    Wang, Qun
    Hu, Lishuan
    2016 INTERNATIONAL CONFERENCE ON IDENTIFICATION, INFORMATION AND KNOWLEDGE IN THE INTERNET OF THINGS (IIKI), 2016, : 116 - 121
  • [25] Multi-Component Feature Extraction for Few-Sample Automatic Modulation Classification
    Hu, Mutian
    Ma, Jitong
    Yang, Zhengyan
    Wang, Jie
    Wu, Zhanjun
    IEEE COMMUNICATIONS LETTERS, 2023, 27 (11) : 3043 - 3047
  • [26] Automatic Modulation Recognition Based on Multi-Dimensional Feature Extraction
    Zhao, Xiaodi
    Zhou, Xuanhan
    Xiong, Jun
    Li, Fang
    Wang, Ling
    2020 12TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2020, : 823 - 828
  • [27] Automatic modulation classification using modulation fingerprint extraction
    Norolahi, Jafar
    Azmi, Paeiz
    Ahmadi, Farzaneh
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2021, 32 (04) : 799 - 810
  • [28] Automatic modulation classification using modulation fingerprint extraction
    NOROLAHI Jafar
    AZMI Paeiz
    AHMADI Farzaneh
    JournalofSystemsEngineeringandElectronics, 2021, 32 (04) : 799 - 810
  • [29] Accuracy Analysis of Feature-based Automatic Modulation Classification with Blind Modulation Detection
    Ghasemzadeh, Pejman
    Banerjee, Subharthi
    Hempel, Michael
    Sharif, Hamid
    2019 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS (ICNC), 2019, : 1000 - 1004
  • [30] Automatic Chinese Text Categorization System Based on Mutual Information
    Lu, Zhimao
    Shi, Hong
    Zhang, Qi
    Yuan, Chaoyue
    2009 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, VOLS 1-7, CONFERENCE PROCEEDINGS, 2009, : 4986 - 4990