Cell-Centered Finite Volume Method for Regularized Mean Curvature Flow on Polyhedral Meshes

被引:0
|
作者
Hahn, Jooyoung [1 ]
Mikula, Karol [2 ]
Frolkovic, Peter [2 ]
Balazovjech, Martin [2 ]
Basara, Branislav [1 ]
机构
[1] AVL List GmbH, Hans List Pl 1, A-8020 Graz, Austria
[2] Slovak Univ Technol Bratislava, Dept Math & Descript Geometry, Radlinskeho 11, Bratislava 81005, Slovakia
关键词
Regularized mean curvature flow; Polyhedral meshes; Over-relaxed correction method; Nonlinear Crank-Nicolson method; LEVEL-SET METHODS; SCHEME; MOTION; ALGORITHMS; EQUATIONS;
D O I
10.1007/978-3-030-43651-3_72
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A cell-centered finite volume method is used to numerically solve a regularized mean curvature flow equation on polyhedral meshes. It is based on an over-relaxed correctionmethod used previously for linear diffusion problems. An iterative nonlinear Crank-Nicolson method is proposed to obtain the second-order accuracy in time and space. The proposed algorithm is used for three-dimensional domains decomposed for parallel computing for two examples that numerically verify the second order accuracy on polyhedral meshes.
引用
收藏
页码:755 / 763
页数:9
相关论文
共 50 条
  • [41] Applications of shock-fitting technique for compressible flow in cell-centered finite volume methods
    Zou D.
    Liu J.
    Zou L.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2017, 38 (11):
  • [42] A STAGGERED CELL-CENTERED FINITE ELEMENT METHOD FOR COMPRESSIBLE AND NEARLY-INCOMPRESSIBLE LINEAR ELASTICITY ON GENERAL MESHES
    Thanh Hai Ong
    Thi Thao Phuong Hoang
    Bordas, Stephane P. A.
    Nguyen-Xuan, H.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (04) : 2051 - 2073
  • [43] Spatial discretization algorithm for cell-centered finite volume method based on face gradient reconstruction
    Wei Y.
    Liu J.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 45 (01):
  • [44] A unified and preserved Dirichlet boundary treatment for the cell-centered finite volume discrete Boltzmann method
    Chen, Leitao
    Schaefer, Laura A.
    PHYSICS OF FLUIDS, 2015, 27 (02)
  • [45] A posteriori error estimations of some cell-centered finite volume methods
    Nicaise, S
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (04) : 1481 - 1503
  • [46] Multidimensional corrections to cell-centered finite volume methods for Maxwell equations
    Bidégaray, B
    Ghidaglia, JM
    APPLIED NUMERICAL MATHEMATICS, 2003, 44 (03) : 281 - 298
  • [47] Cell-Centered Nonlinear Finite-Volume Methods With Improved Robustness
    Zhang, Wenjuan
    Al Kobaisi, Mohammed
    SPE JOURNAL, 2020, 25 (01): : 288 - 309
  • [48] On Numerical Integration and Conservation of Cell-Centered Finite Difference Method
    Wang, Zihao
    Liao, Fei
    Ye, Zhengyin
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 100 (03)
  • [49] Generalized cell-centered finite volume methods: application to two-phase flow in porous media
    Chavent, G
    Jaffre, J
    Roberts, JE
    COMPUTATIONAL SCIENCE FOR THE 21ST CENTURY, 1997, : 231 - 241
  • [50] A second-order cell-centered Lagrangian ADER-MOOD finite volume scheme on multidimensional unstructured meshes for hydrodynamics
    Boscheri, Walter
    Dumbser, Michael
    Loubere, Raphael
    Maire, Pierre-Henri
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 358 : 103 - 129