Dynamic Split Computing Framework in Distributed Serverless Edge Clouds

被引:2
|
作者
Ko, Haneul [1 ]
Jeong, Hyeonjae [2 ]
Jung, Daeyoung [2 ]
Pack, Sangheon [2 ]
机构
[1] Kyung Hee Univ, Dept Elect Engn, Yongin 17104, Gyeonggi, South Korea
[2] Korea Univ, Sch Elect Engn, Seoul 02841, South Korea
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 08期
关键词
Distributed serverless edge cloud; joint optimization; split computing; warm start; RESOURCE-ALLOCATION; INFERENCE;
D O I
10.1109/JIOT.2023.3342438
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Distributed serverless edge clouds and split computing are promising technologies to reduce the inference latency of large-scale deep neural networks (DNNs). In this article, we propose a dynamic split computing framework (DSCF) in distributed serverless edge clouds. In DSCF, the edge cloud orchestrator dynamically determines 1) splitting point and 2) warm status maintenance of container instances (i.e., whether or not to maintain each container instance in a warm status). For optimal decisions, we formulate a constrained Markov decision process (CMDP) problem to minimize the inference latency while maintaining the average resource consumption of distributed edge clouds below a certain level. The optimal stochastic policy can be obtained by converting the CMDP model into a linear programming (LP) model. The evaluation results demonstrate that DSCF can achieve less than half the inference latency compared to the local computing scheme while maintaining sufficient low resource consumption of distributed edge clouds.
引用
收藏
页码:14523 / 14531
页数:9
相关论文
共 50 条
  • [41] Energy Efficiency in Edge Environments: a Serverless Computing Approach
    Djemame, Karim
    ECONOMICS OF GRIDS, CLOUDS, SYSTEMS, AND SERVICES, GECON 2021, 2021, 13072 : 181 - 184
  • [42] IoT Serverless Computing at the Edge: A Systematic Mapping Review
    Kjorveziroski, Vojdan
    Filiposka, Sonja
    Trajkovik, Vladimir
    COMPUTERS, 2021, 10 (10)
  • [43] Review of WebAssembly Application Research for Edge Serverless Computing
    Wang, Xin
    Zhao, Kai
    Qin, Bin
    Computer Engineering and Applications, 2023, 59 (11) : 28 - 36
  • [44] Evaluating Webassembly Enabled Serverless Approach for Edge Computing
    Mendki, Pankaj
    2020 IEEE CLOUD SUMMIT, 2020, : 161 - 166
  • [45] Supporting Multi-Provider Serverless Computing on the Edge
    Aske, Austin
    Zhao, Xinghui
    47TH INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING (ICPP '18), 2018,
  • [46] Serverless Edge Computing Framework for Efficient Offloading Method with Time Frame based Priority Resource Management
    Kandukuri, Srinithya
    Gayam, Dedeepya
    Bommisetty, Sai Divya
    Bobba, Revathi
    Annapurna, Bala
    2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE COMPUTING AND SMART SYSTEMS, ICSCSS 2024, 2024, : 703 - 710
  • [47] Nitro: Boosting Distributed Reinforcement Learning with Serverless Computing
    Yu, Hanfei
    Carter, Jacob
    Wang, Hao
    Tiwari, Devesh
    Li, Jian
    Park, Seung-Jong
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2024, 18 (01): : 66 - 79
  • [48] AutoSF: Adaptive Distributed Model Training in Dynamic Edge Computing
    Yang, Lei
    Gan, Yingqi
    Chen, Jinru
    Cao, Jiannong
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (06) : 6549 - 6562
  • [49] DEW: A New Edge Computing Component for Distributed Dynamic Networks
    Cristescu, Giorgiana
    Dobrescu, Radu
    Chenaru, Oana
    Florea, Gheorghe
    2019 22ND INTERNATIONAL CONFERENCE ON CONTROL SYSTEMS AND COMPUTER SCIENCE (CSCS), 2019, : 547 - 551
  • [50] Distributed and Dynamic Service Placement in Pervasive Edge Computing Networks
    Ning, Zhaolong
    Dong, Peiran
    Wang, Xiaojie
    Wang, Shupeng
    Hu, Xiping
    Guo, Song
    Qiu, Tie
    Hu, Bin
    Kwok, Ricky Y. K.
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2021, 32 (06) : 1277 - 1292