Integrable operators, partial derivative -problems, KP and NLS hierarchy

被引:1
|
作者
Bertola, M. [1 ,4 ]
Grava, T. [2 ,3 ,5 ]
Orsatti, G. [6 ]
机构
[1] Concordia Univ, Dept Math & Stat, 1455 Maisonneuve W Montreal, Quebec City, PQ H3G 1M8, Canada
[2] Scuola Int Super Studi Avanzati, SISSA, via Bonomea 265, Trieste, Italy
[3] INFN, Sez Trieste, Trieste, Italy
[4] Univ Montreal, Ctr Rech Math, Succ Ctr Ville, CP 6128, Montreal, PQ H3C 3J7, Canada
[5] Univ Bristol, Sch Math, Fry Bldg, Bristol BS8 1UG, Glocs, England
[6] UCLouvain, Inst Rech Math & Phys, Chemin Cycloton 2, B-1348 Louvain La Neuve, Belgium
基金
加拿大自然科学与工程研究理事会; 欧盟地平线“2020”;
关键词
integrable systems; d-bar problems; integrable operators; regularized determinants; FREDHOLM DETERMINANTS; TAU-FUNCTION; REPRESENTATION; ASYMPTOTICS; EQUATIONS;
D O I
10.1088/1361-6544/ad4b8e
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop the theory of integrable operators K acting on a domain of the complex plane with smooth boundary in analogy with the theory of integrable operators acting on contours of the complex plane. We show how the resolvent operator is obtained from the solution of a partial derivative -problem in the complex plane. When such a partial derivative -problem depends on auxiliary parameters we define its Malgrange one form in analogy with the theory of isomonodromic problems. We show that the Malgrange one form is closed and coincides with the exterior logarithmic differential of the Hilbert-Carleman determinant of the operator K . With suitable choices of the setup we show that the Hilbert-Carleman determinant is a tau-function of the Kadomtsev-Petviashvili (KP) or nonlinear Schrodinger hierarchies.
引用
收藏
页数:33
相关论文
共 50 条