MSGNet: Learning Multi-Scale Inter-Series Correlations for Multivariate Time Series Forecasting

被引:0
|
作者
Cai, Wanlin [1 ]
Liang, Yuxuan [2 ]
Liu, Xianggen [1 ]
Feng, Jianshuai [3 ]
Wu, Yuankai [1 ]
机构
[1] Sichuan Univ, Chengdu, Peoples R China
[2] Hong Kong Univ Sci & Technol Guangzhou, Guangzhou, Peoples R China
[3] Beijing Inst Technol, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multivariate time series forecasting poses an ongoing challenge across various disciplines. Time series data often exhibit diverse intra-series and inter-series correlations, contributing to intricate and interwoven dependencies that have been the focus of numerous studies. Nevertheless, a significant research gap remains in comprehending the varying inter-series correlations across different time scales among multiple time series, an area that has received limited attention in the literature. To bridge this gap, this paper introduces MSGNet, an advanced deep learning model designed to capture the varying inter-series correlations across multiple time scales using frequency domain analysis and adaptive graph convolution. By leveraging frequency domain analysis, MS-GNet effectively extracts salient periodic patterns and decomposes the time series into distinct time scales. The model incorporates a self-attention mechanism to capture intra-series dependencies, while introducing an adaptive mixhop graph convolution layer to autonomously learn diverse interseries correlations within each time scale. Extensive experiments are conducted on several real-world datasets to showcase the effectiveness of MSGNet. Furthermore, MSGNet possesses the ability to automatically learn explainable multi-scale inter-series correlations, exhibiting strong generalization capabilities even when applied to out-of-distribution samples. Code is available at https://github.com/YoZhibo/MSGNet.
引用
收藏
页码:11141 / 11149
页数:9
相关论文
共 50 条
  • [21] A Multi-granularity Network for Time Series Forecasting on Multivariate Time Series Data
    Wang, Zongqiang
    Xian, Yan
    Wang, Guoyin
    Yu, Hong
    ROUGH SETS, IJCRS 2023, 2023, 14481 : 324 - 338
  • [22] Learning evolving relations for multivariate time series forecasting
    Nguyen-Thai, Binh
    Le, Vuong
    Tieu, Ngoc-Dung T.
    Tran, Truyen
    Venkatesh, Svetha
    Ramzan, Naeem
    APPLIED INTELLIGENCE, 2024, 54 (05) : 3918 - 3932
  • [23] Learning evolving relations for multivariate time series forecasting
    Binh Nguyen-Thai
    Vuong Le
    Ngoc-Dung T. Tieu
    Truyen Tran
    Svetha Venkatesh
    Naeem Ramzan
    Applied Intelligence, 2024, 54 : 3918 - 3932
  • [24] Multivariate Financial Time Series Forecasting with Deep Learning
    Martelo, Sebastian
    Leon, Diego
    Hernandez, German
    APPLIED COMPUTER SCIENCES IN ENGINEERING, WEA 2022, 2022, 1685 : 160 - 169
  • [25] Forecasting multivariate time series
    Athanasopoulos, George
    Vahid, Farshid
    INTERNATIONAL JOURNAL OF FORECASTING, 2015, 31 (03) : 680 - 681
  • [26] Decomposable Transformer with Inter-series Dependencies and Intra-Series Temporal Modeling for Multi-Horizon Photovoltaic Power Forecasting
    Hu, Lelin
    Liu, Lei
    Zhu, Jan
    Li, Bin
    2024 10TH INTERNATIONAL CONFERENCE ON BIG DATA AND INFORMATION ANALYTICS, BIGDIA 2024, 2024, : 524 - 531
  • [27] Probabilistic autoencoder with multi-scale feature extraction for multivariate time series anomaly detection
    Zhang, Guangyao
    Gao, Xin
    Wang, Lei
    Xue, Bing
    Fu, Shiyuan
    Yu, Jiahao
    Huang, Zijian
    Huang, Xu
    APPLIED INTELLIGENCE, 2023, 53 (12) : 15855 - 15872
  • [28] Probabilistic autoencoder with multi-scale feature extraction for multivariate time series anomaly detection
    Guangyao Zhang
    Xin Gao
    Lei Wang
    Bing Xue
    Shiyuan Fu
    Jiahao Yu
    Zijian Huang
    Xu Huang
    Applied Intelligence, 2023, 53 : 15855 - 15872
  • [29] Multi-scale Internet traffic forecasting using neural networks and time series methods
    Cortez, Paulo
    Rio, Miguel
    Rocha, Miguel
    Sousa, Pedro
    EXPERT SYSTEMS, 2012, 29 (02) : 143 - 155
  • [30] Multi-scale least squares support vector machine for financial time series forecasting
    Wei, Liwei
    Chen, Zhenyu
    Xie, Qiwei
    Li, Jianping
    PROCEEDINGS OF JOURNAL PUBLICATION MEETING (2007), 2007, : 54 - 58