Adaptative Scaler-Moment Crystal Graph Attention Neural Network for Material Property Prediction

被引:0
|
作者
Zhang, Weiwei [1 ,2 ]
Tang, Lixin [1 ]
Xu, Meiling [3 ,4 ]
机构
[1] Northeastern Univ, Natl Frontiers Sci Ctr Ind Intelligence & Syst Opt, Shenyang 110819, Peoples R China
[2] Northeastern Univ, Key Lab Data Analyt & Optimizat Smart Ind, Minist Educ, Shenyang 110819, Peoples R China
[3] Northeastern Univ, Liaoning Engn Lab Data Analyt & Optimizat Smart In, Shenyang 110819, Peoples R China
[4] Northeastern Univ, Liaoning Key Lab Mfg Syst & Logist Optimizat, Shenyang 110819, Peoples R China
基金
国家自然科学基金重大项目; 中国国家自然科学基金;
关键词
Crystals; Atomic measurements; Optimization; Material properties; Deep learning; Computational modeling; Adaptation models; Bayesian optimization; graph neural networks; material property prediction. mutual information; KNEE;
D O I
10.1109/TETCI.2024.3436869
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph neural networks have gained increasing popularity for predicting crystal material properties. However, significant dilemmas are involved in designing such models: (i) chemical information about crystals is difficult to capture, and (ii) a complex model is required to map the chemical space to the property space. In this study, we develop an adaptative scaler-moment crystal graph attention neural network (SM-CGANN) for predicting crystal material properties. The graph neural network is enhanced using scalar moment aggregation functions and attention mechanism, controlling chemical information exchange between the central atom and its neighbors. Graph pooling increases the information transmission rate by maximizing mutual information between the pooled and input graphs. In addition, we incorporate the multi-objective Bayesian optimization method to quickly find the best hyperparameters and network architecture, ensuring an adaptive balance between the prediction accuracy and spatial complexity of SM-CGANN. This method is superior to state-art-of models in terms of accuracy performance for different material properties in density function functional theory calculation datasets (Materials Project and Open Quantum Materials Database). Moreover, it provides highly accurate performance of end-user scenarios involving the classification of metal/nonmetal and high-/weak-magnetic materials using the Open Quantum Materials Database dataset.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] GCNGAT: Drug-disease association prediction based on graph convolution neural network and graph attention network
    Yang, Runtao
    Fu, Yao
    Zhang, Qian
    Zhang, Lina
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2024, 150
  • [32] TARGCN: temporal attention recurrent graph convolutional neural network for traffic prediction
    Yang, He
    Jiang, Cong
    Song, Yun
    Fan, Wendong
    Deng, Zelin
    Bai, Xinke
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (06) : 8179 - 8196
  • [33] Bilinear Multi-Head Attention Graph Neural Network for Traffic Prediction
    Hu, Haibing
    Han, Kai
    Yin, Zhizhuo
    ICAART: PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 2, 2022, : 33 - 43
  • [34] Moving object location prediction based on a graph neural network with temporal attention
    Qian J.
    Wu Y.
    International Journal of Security and Networks, 2023, 18 (03) : 153 - 164
  • [35] Multi-Agent Trajectory Prediction with Graph Attention Isomorphism Neural Network
    Liu, Yongkang
    Qi, Xuewei
    Sisbot, Emrah Akin
    Oguchi, Kentaro
    2022 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2022, : 273 - 279
  • [36] Crysformer: An attention-based graph neural network for properties prediction of crystals
    Wang, Tian
    Chen, Jiahui
    Teng, Jing
    Shi, Jingang
    Zeng, Xinhua
    Snoussi, Hichem
    CHINESE PHYSICS B, 2023, 32 (09)
  • [37] Crysformer: An attention-based graph neural network for properties prediction of crystals
    王田
    陈家辉
    滕婧
    史金钢
    曾新华
    Hichem Snoussi
    Chinese Physics B, 2023, (09) : 26 - 31
  • [38] Accurate piezoelectric tensor prediction with equivariant attention tensor graph neural network
    Dong, Luqi
    Zhang, Xuanlin
    Yang, Ziduo
    Shen, Lei
    Lu, Yunhao
    NPJ COMPUTATIONAL MATERIALS, 2025, 11 (01)
  • [39] Graph Neural Network-Based Molecular Property Prediction with Patch Aggregation
    See, Teng Jiek
    Zhang, Daokun
    Boley, Mario
    Chalmers, David K.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2024, 20 (20) : 8886 - 8896
  • [40] Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties
    Xie, Tian
    Grossman, Jeffrey C.
    PHYSICAL REVIEW LETTERS, 2018, 120 (14)