Physics Informed Cellular Neural Networks for Solving Partial Differential Equations

被引:0
|
作者
Slavova, Angela [1 ]
Litsyn, Elena [2 ]
机构
[1] Bulgarian Acad Sci, Inst Mech, Sofia 1113, Bulgaria
[2] Ariel Univ, Dept Math, Ariel, Israel
关键词
Physics informed neural networks; Machine learning; Algorithm; Solving partial differential equations; Physics informed cellular neural networks; Burger's equation;
D O I
10.1007/978-3-031-53212-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Physics-Informed Neural Networks (PINNs) are a scientific machine learning technique used to solve a broad class of problems. PINNs approximate problems' solutions by training a neural network to minimize a loss function; it includes terms reflecting the initial and boundary conditions along the space-time domain's boundary. PINNs are deep learning networks that, given an input point in the integration domain, produce an estimated solution in that point of a differential equation after training. The basic concept behind PINN training is that it can be thought of as an unsupervised strategy that does not require labelled data, such as results from prior simulations or experiments. In this paper we generalize the idea of PINNs for solving partial differential equations by introducing physics informed cellular neural networks (PICNNs). We shall present example of the solutions of reaction-diffusion obtained by PICNNs. The advantages of the proposed new method are in the fastest algorithms and real time solutions.
引用
收藏
页码:35 / 45
页数:11
相关论文
共 50 条
  • [31] A Physics informed neural network approach for solving time fractional Black-Scholes partial differential equations
    Nuugulu, Samuel M.
    Patidar, Kailash C.
    Tarla, Divine T.
    OPTIMIZATION AND ENGINEERING, 2024,
  • [32] Unified finite-volume physics informed neural networks to solve the heterogeneous partial differential equations
    Mei, Di
    Zhou, Kangcheng
    Liu, Chun-Ho
    KNOWLEDGE-BASED SYSTEMS, 2024, 295
  • [33] Physics-informed neural networks combined with polynomial interpolation to solve nonlinear partial differential equations
    Tang, Siping
    Feng, Xinlong
    Wu, Wei
    Xu, Hui
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 132 : 48 - 62
  • [34] A trial solution for imposing boundary conditions of partial differential equations in physics-informed neural networks
    Manavi, Seyedalborz
    Fattahi, Ehsan
    Becker, Thomas
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127
  • [35] Designing Progressive Lenses Using Physics-Informed Neural Networks to Solve Partial Differential Equations
    Xiang, Huazhong
    Cheng, Hui
    Ding, Qihui
    Zheng, Zexi
    Chen, Jiabi
    Wang, Cheng
    Zhang, Dawei
    Zhuang, Songlin
    ACTA OPTICA SINICA, 2025, 45 (01)
  • [36] Invariant Physics-Informed Neural Networks for Ordinary Differential Equations
    Arora, Shivam
    Bihlo, Alex
    Valiquette, Francis
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25 : 1 - 24
  • [37] Multilayer neural networks for solving a class of partial differential equations
    He, S
    Reif, K
    Unbehauen, R
    NEURAL NETWORKS, 2000, 13 (03) : 385 - 396
  • [38] Artificial neural networks for solving ordinary and partial differential equations
    Lagaris, IE
    Likas, A
    Fotiadis, DI
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1998, 9 (05): : 987 - 1000
  • [39] DISTRIBUTED PARAMETER NEURAL NETWORKS FOR SOLVING PARTIAL DIFFERENTIAL EQUATIONS
    Feng Dazheng Bao Zheng Jiao Licheng(Electronic Engineering Institute
    JournalofElectronics(China), 1997, (02) : 186 - 190
  • [40] An Artificial Neural Networks Method for Solving Partial Differential Equations
    Alharbi, Abir
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 1425 - 1428