Super-Resolution Reconstruction from Truncated Fourier Transform

被引:0
|
作者
Isaev, Mikhail [1 ]
Novikov, Roman G. [2 ,3 ]
Sabinin, Grigory, V [4 ]
机构
[1] Monash Univ, Sch Math, Clayton, Vic, Australia
[2] Inst Polytech Paris, Ecole Polytech, CNRS, CMAP, Palaiseau, France
[3] IEPT Ras, Moscow, Russia
[4] Lomonosov Moscow State Univ, Fac Mech & Math, Moscow, Russia
来源
关键词
D O I
10.1007/978-3-031-41665-1_7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present recent theoretical and numerical results on recovering a compactly supported function v on R-d, d >= 1, from its Fourier transform Fv given within the ball B-r. We proceed from known results on the prolate spheroidal wave functions and on the Radon transform. The most interesting point of our numerical examples consists in super-resolution, that is, in recovering details beyond the diffraction limit, that is, details of size less than pidividedbyr.pi r, where r is the radius of the ball mentioned above. This short review is based on the works Isaev, Novikov (2022 J. Math. Pures Appl. 163 318-333) and Isaev, Novikov, Sabinin (2022 Inverse Problems 38 105002).
引用
收藏
页码:63 / 69
页数:7
相关论文
共 50 条
  • [31] Guaranteed Reconstruction for Image Super-resolution
    Graba, Fares
    Loquin, Kevin
    Comby, Frederic
    Strauss, Olivier
    2013 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ - IEEE 2013), 2013,
  • [32] Super-resolution reconstruction for underwater imaging
    Chen, Yuzhang
    Li, Wei
    Xia, Min
    Li, Qing
    Yang, Kecheng
    OPTICA APPLICATA, 2011, 41 (04) : 841 - 853
  • [33] Super-resolution reconstruction of hyperspectral images
    Akgun, T
    Altunbasak, Y
    Mersereau, RM
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2005, 14 (11) : 1860 - 1875
  • [34] Algorithms of super-resolution image reconstruction
    Gomeztagle, Francisco
    Ponomaryov, Volodymyr
    SIXTH INT KHARKOV SYMPOSIUM ON PHYSICS AND ENGINEERING OF MICROWAVES, MILLIMETER AND SUBMILLIMETER WAVES/WORKSHOP ON TERAHERTZ TECHNOLOGIES, VOLS 1 AND 2, 2007, : 926 - +
  • [35] A Survey of Image Super-Resolution Reconstruction
    Tang Y.-Q.
    Pan H.
    Zhu Y.-P.
    Li X.-D.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2020, 48 (07): : 1407 - 1420
  • [36] Stochastic super-resolution image reconstruction
    Tian, Jing
    Ma, Kai-Kuang
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2010, 21 (03) : 232 - 244
  • [37] Super-resolution reconstruction of image sequences
    Elad, M
    Feuer, A
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1999, 21 (09) : 817 - 834
  • [38] A new method for super-resolution reconstruction
    Zhang, Dong
    Xie, Cunxie
    2006 IMACS: MULTICONFERENCE ON COMPUTATIONAL ENGINEERING IN SYSTEMS APPLICATIONS, VOLS 1 AND 2, 2006, : 65 - 67
  • [39] Further improvement of super-resolution reconstruction
    Ho, Edward Y. T.
    Todd-Pokropek, Andrew E.
    WORLD CONGRESS ON ENGINEERING 2007, VOLS 1 AND 2, 2007, : 719 - +
  • [40] Super-resolution reconstruction based on regularization
    School of Electronic Engineering and Optoelectronic Techniques, Nanjing University of Science and Technology, Nanjing 210094, China
    不详
    不详
    Dianzi Yu Xinxi Xuebao, 2007, 7 (1713-1716):