Development for Electrical Fault Detection and Classification Analysis Model based on Machine Learning Algorithms

被引:0
|
作者
Kim, Junho [1 ]
Sim, Sunhwa [2 ]
Kim, Seokjun [3 ]
Cho, Seokheon [4 ]
Han, Changhee [5 ]
机构
[1] Keimyung Univ, Dept Robot Engn, Daegu, South Korea
[2] Kumoh Natl Inst Technol, Dept Med IT Convergence Engn, Gumi, South Korea
[3] Kumoh Natl Inst Technol, Dept Semicond Syst Engn, Gumi, South Korea
[4] Univ San Diego, Qualcomm Inst, La Jolla, CA USA
[5] Gyeongsang Natl Univ, Dept Elect Engn, Jinju, South Korea
基金
新加坡国家研究基金会;
关键词
Machine learning; electrical fault; fault detection; SYSTEMS;
D O I
10.1109/SusTech60925.2024.10553405
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
With the development of industry and technology in modern society, many industries and houses require a sufficient electricity supply. As demand for electricity increases, rapid detection of the type and location of electrical faults within the power system is critical to ensure the reliable operation of power systems. Since the traditional fault detection method has low accuracy and takes much time to detect the fault type and location, we propose a new electrical fault detection model based on machine learning algorithms. MATLAB Simulink collects the line current and bus voltage data during power system fault events. We consider two machine learning algorithms, Random Forest and K-Nearest Neighbor (K-NN) algorithms, as electrical fault detection and classification models. The data collected from the power system simulation is processed in various ways and then applied to the machine learning algorithms. As a result, we verify that the learning model based on the Random Forest algorithms, using the peak-to-peak value of the line current and bus voltage as training data, shows the best performance for detecting and predicting electrical faults.
引用
收藏
页码:50 / 56
页数:7
相关论文
共 50 条
  • [31] Fault detection in power grids based on improved supervised machine learning binary classification
    Wadi, Mohammed
    JOURNAL OF ELECTRICAL ENGINEERING-ELEKTROTECHNICKY CASOPIS, 2021, 72 (05): : 315 - 322
  • [32] SSDP DDoS Attacks Detection with Machine Learning Classification Algorithms
    Dasari, Kishorebabu
    Reddy, Siddharth
    Shirley, G. Sharon
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON DATA SCIENCE, MACHINE LEARNING AND APPLICATIONS, VOL 1, ICDSMLA 2023, 2025, 1273 : 921 - 928
  • [33] Review: Heart Diseases Detection by Machine Learning Classification Algorithms
    Pothala Ramya
    Ashapu Bhavani
    Sangeeta Viswanadham
    JournalofHarbinInstituteofTechnology(NewSeries), 2022, 29 (04) : 81 - 92
  • [34] A New Approach for Machine Learning-Based Fault Detection and Classification in Power Systems
    Tokel, Mil Alper
    Al Halaseh, Rana
    Alirezaei, Gholamreza
    Mathar, Rudolf
    2018 IEEE POWER & ENERGY SOCIETY INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE (ISGT), 2018,
  • [35] Road Marking Detection and Classification Using Machine Learning Algorithms
    Chen, Tairui
    Chen, Zhilu
    Shi, Quan
    Huang, Xinming
    2015 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2015, : 617 - 621
  • [36] Machine learning algorithms in microbial classification: a comparative analysis
    Wu, Yuandi
    Gadsden, S. Andrew
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2023, 6
  • [37] Performance Analysis of Machine Learning Algorithms for Gender Classification
    Pondhu, Laxmi Narayana
    Kummari, Govardhani
    PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INVENTIVE COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES (ICICCT), 2018, : 1626 - 1628
  • [38] Machine Learning Algorithms for Document Classification: Comparative Analysis
    Rashid, Faizur
    Gargaare, Suleiman M. A.
    Aden, Abdulkadir H.
    Abdi, Afendi
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (04) : 260 - 265
  • [39] Comparative Analysis of Different Machine Learning Algorithms in Classification
    Wang, Lincong
    Xu, Weiwen
    Zhu, Zhenghao
    2022 INTERNATIONAL CONFERENCE ON BIG DATA, INFORMATION AND COMPUTER NETWORK (BDICN 2022), 2022, : 257 - 263
  • [40] PV array Fault Classification based on Machine Learning
    Nguyen Quoc Minh
    Do Thi Dieu Mai
    Ha Huy Phuc Nguyen
    2022 11TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND INFORMATION SCIENCES (ICCAIS), 2022, : 322 - 326