Data-Driven Chance Constrained Control using Kernel Distribution Embeddings

被引:0
|
作者
Thorpe, Adam J. [1 ]
Lew, Thomas [2 ]
Oishi, Meeko M. K. [1 ]
Pavone, Marco [2 ]
机构
[1] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA
[2] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
kernel distribution embeddings; stochastic optimal control; joint chance constraints;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a data-driven algorithm for efficiently computing stochastic control policies for general joint chance constrained optimal control problems. Our approach leverages the theory of kernel distribution embeddings, which allows representing expectation operators as inner products in a reproducing kernel Hilbert space. This framework enables approximately reformulating the original problem using a dataset of observed trajectories from the system without imposing prior assumptions on the parameterization of the system dynamics or the structure of the uncertainty. By optimizing over a finite subset of stochastic open-loop control trajectories, we relax the original problem to a linear program over the control parameters that can be efficiently solved using standard convex optimization techniques. We demonstrate our proposed approach in simulation on a system with nonlinear non-Markovian dynamics navigating in a cluttered environment.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Data-driven distributionally robust chance-constrained optimization with Wasserstein metric
    Ji, Ran
    Lejeune, Miguel A.
    JOURNAL OF GLOBAL OPTIMIZATION, 2021, 79 (04) : 779 - 811
  • [22] Data-driven distributionally robust chance-constrained optimization with Wasserstein metric
    Ran Ji
    Miguel A. Lejeune
    Journal of Global Optimization, 2021, 79 : 779 - 811
  • [23] Fast Data-Driven Chance Constrained AC-OPF using Hybrid Sparse Gaussian Processes
    Mitrovic, Mile
    Lukashevich, Aleksandr
    Vorobev, Petr
    Terzija, Vladimir
    Maximov, Yury
    Deka, Deepjyoti
    2023 IEEE BELGRADE POWERTECH, 2023,
  • [24] Control of batch pulping process using data-driven constrained iterative learning control
    Shibani, B.
    Ambure, Prathmesh
    Purohit, Amit
    Suratia, Preetsinh
    Bhartiya, Sharad
    COMPUTERS & CHEMICAL ENGINEERING, 2023, 170
  • [25] Optimal black start strategy for microgrids considering the uncertainty using a data-driven chance constrained approach
    Wu, Xiong
    Shi, Shuo
    Wang, Xiuli
    Duan, Chao
    Ding, Tao
    Li, Furong
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2019, 13 (11) : 2236 - 2248
  • [26] Constrained data-driven optimal iterative learning control
    Chi, Ronghu
    Liu, Xiaohe
    Zhang, Ruikun
    Hou, Zhongsheng
    Huang, Biao
    JOURNAL OF PROCESS CONTROL, 2017, 55 : 10 - 29
  • [27] A chance-constrained tube-based model predictive control for tracking linear systems using data-driven uncertainty sets
    Zhang, Shulei
    Jia, Runda
    He, Dakuo
    Chu, Fei
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2024, 34 (02) : 969 - 995
  • [28] Data-driven assisted chance-constrained energy and reserve scheduling with wind curtailment
    Lei, Xingyu
    Yang, Zhifang
    Zhao, Junbo
    Yu, Juan
    APPLIED ENERGY, 2022, 321
  • [29] Data-driven Distributionally Adjustable Robust Chance-constrained DG Capacity Assessment
    Masoume Mahmoodi
    Seyyed Mahdi Noori Rahim Abadi
    Ahmad Attarha
    Paul Scott
    Lachlan Blackhall
    Journal of Modern Power Systems and Clean Energy, 2024, (01) : 115 - 127
  • [30] Data-driven Distributionally Adjustable Robust Chance-constrained DG Capacity Assessment
    Mahmoodi, Masoume
    Abadi, Seyyed Mahdi Noori Rahim
    Attarha, Ahmad
    Scott, Paul
    Blackhall, Lachlan
    JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2024, 12 (01) : 115 - 127