Data-Driven Chance Constrained Control using Kernel Distribution Embeddings

被引:0
|
作者
Thorpe, Adam J. [1 ]
Lew, Thomas [2 ]
Oishi, Meeko M. K. [1 ]
Pavone, Marco [2 ]
机构
[1] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA
[2] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
kernel distribution embeddings; stochastic optimal control; joint chance constraints;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a data-driven algorithm for efficiently computing stochastic control policies for general joint chance constrained optimal control problems. Our approach leverages the theory of kernel distribution embeddings, which allows representing expectation operators as inner products in a reproducing kernel Hilbert space. This framework enables approximately reformulating the original problem using a dataset of observed trajectories from the system without imposing prior assumptions on the parameterization of the system dynamics or the structure of the uncertainty. By optimizing over a finite subset of stochastic open-loop control trajectories, we relax the original problem to a linear program over the control parameters that can be efficiently solved using standard convex optimization techniques. We demonstrate our proposed approach in simulation on a system with nonlinear non-Markovian dynamics navigating in a cluttered environment.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Data-driven chance constrained stochastic program
    Jiang, Ruiwei
    Guan, Yongpei
    MATHEMATICAL PROGRAMMING, 2016, 158 (1-2) : 291 - 327
  • [2] Data-driven individual and joint chance-constrained optimization via kernel smoothing
    Calfa, B. A.
    Grossmann, I. E.
    Agarwal, A.
    Bury, S. J.
    Wassick, J. M.
    COMPUTERS & CHEMICAL ENGINEERING, 2015, 78 : 51 - 69
  • [3] Data-driven chance constrained stochastic program
    Ruiwei Jiang
    Yongpei Guan
    Mathematical Programming, 2016, 158 : 291 - 327
  • [4] Uncertainty Analysis for Data-Driven Chance-Constrained Optimization
    Haeussling Loewgren, Bartolomeus
    Weigert, Joris
    Esche, Erik
    Repke, Jens-Uwe
    SUSTAINABILITY, 2020, 12 (06)
  • [5] Data-driven tuning for chance constrained optimization: analysis and extensions
    Hou, Ashley M.
    Roald, Line A.
    TOP, 2022, 30 (03) : 649 - 682
  • [6] Data-driven tuning for chance constrained optimization: analysis and extensions
    Ashley M. Hou
    Line A. Roald
    TOP, 2022, 30 : 649 - 682
  • [7] Data-Driven Chance Constrained Programs over Wasserstein Balls
    Chen, Zhi
    Kuhn, Daniel
    Wiesemann, Wolfram
    OPERATIONS RESEARCH, 2024, 72 (01) : 410 - 424
  • [8] Data-Driven Approximations of Chance Constrained Programs in Nonstationary Environments
    Yan, Shuhao
    Parise, Francesca
    Bitar, Eilyan
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 2671 - 2676
  • [9] GENERATION OF DATA-DRIVEN MODELS FOR CHANCE-CONSTRAINED OPTIMIZATION
    Weigert, J.
    Esche, E.
    Hoffmann, C.
    Repke, J. -U.
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON FOUNDATIONS OF COMPUTER-AIDED PROCESS DESIGN, 2019, 47 : 311 - 316
  • [10] Data-Driven Stochastic Optimal Control Using Kernel Gradients
    Thorpe, Adam J.
    Gonzales, Jake A.
    Oishi, Meeko M. K.
    2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 2548 - 2553