Nambu-covariant many-body theory I: Perturbative approximations

被引:1
|
作者
Drissi, M. [1 ,2 ]
Rios, A. [2 ,3 ,4 ]
Barbieri, C. [2 ,5 ,6 ]
机构
[1] TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
[2] Univ Surrey, Dept Phys, Guildford GU2 7XH, England
[3] Univ Barcelona UB, Dept Fis Quant & Astrofis FQA, Marti & Franques 1, E-08028 Barcelona, Spain
[4] Univ Barcelona IEEC UB, Inst Ciencies Cosmos ICCUB, Marti & Franques 1, E-08028 Barcelona, Spain
[5] Univ Milan, Dipartimento Fis Aldo Pontremoli, Via Celoria 16, I-20133 Milan, Italy
[6] Sez Milano, INFN, Via Celoria 16, I-20133 Milan, Italy
关键词
Quantum many-body theory; Symmetry-breaking; Perturbation theory; Superfluidity; SUPERFLUID SYSTEMS; ENTROPY PRINCIPLE; NEUTRON-STARS; RENORMALIZATION; GENERATION; DIAGRAMS; NUCLEI; MATTER; RULES;
D O I
10.1016/j.aop.2024.169729
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Symmetry-breaking considerations play an important role in allowing reliable and accurate predictions of complex systems in quantum many-body simulations. The general theory perturbations in symmetry-breaking phases is nonetheless intrinsically more involved than in unbroken phase due to non-vanishing anomalous Green's functions or anomalous quasiparticle interactions. In the present paper, we develop a formulation of many-body theory at nonzero temperature which is explicitly covariant with respect to a group containing Bogoliubov transformations. Based on the concept of Nambu tensors, we derive a factorisation of standard Feynman diagrams that is valid for a general Hamiltonian. The resulting factorised amplitudes are indexed over the set of un-oriented Feynman diagrams with fully antisymmetric vertices. argue that, within this framework, the design of symmetry-breaking many-body approximations is simplified.
引用
收藏
页数:34
相关论文
共 50 条
  • [31] Many-body approximations in the sd-shell "sandbox"
    Sen'kov, R. A.
    Bertsch, G. F.
    Brown, B. A.
    Luo, Y. L.
    Zelevinsky, V. G.
    PHYSICAL REVIEW C, 2008, 78 (04):
  • [32] SELF-CONSISTENT APPROXIMATIONS IN MANY-BODY SYSTEMS
    REVZEN, M
    JOURNAL OF MATHEMATICAL PHYSICS, 1965, 6 (03) : 450 - &
  • [33] Physically interpretable approximations of many-body spectral functions
    Goswami, Shubhang
    Barros, Kipton
    Carbone, Matthew R.
    PHYSICAL REVIEW E, 2024, 109 (01)
  • [34] SELF-CONSISTENT APPROXIMATIONS IN MANY-BODY SYSTEMS
    BAYM, G
    PHYSICAL REVIEW, 1962, 127 (04): : 1391 - &
  • [35] SELF-CONSISTENT APPROXIMATIONS IN MANY-BODY SYSTEMS
    REVZEN, M
    TRAINOR, LEH
    JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (09) : 1804 - &
  • [36] Non-perturbative many-body treatment of molecular magnets
    Eskridge, Brandon
    Krakauer, Henry
    Zhang, Shiwei
    JOURNAL OF CHEMICAL PHYSICS, 2023, 158 (23):
  • [37] Many-body perturbation theory and non-perturbative approaches: screened interaction as the key ingredient
    Tarantino, Walter
    Mendoza, Bernardo S.
    Romaniello, Pina
    Berger, J. A.
    Reining, Lucia
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2018, 30 (13)
  • [38] Importance truncation in non-perturbative many-body techniques
    Porro, A.
    Soma, V
    Tichai, A.
    Duguet, T.
    EUROPEAN PHYSICAL JOURNAL A, 2021, 57 (10):
  • [39] Quasi-Nambu-Goldstone modes in many-body scar models
    Ren, Jie
    Wang, Yu-Peng
    Fang, Chen
    PHYSICAL REVIEW B, 2024, 110 (24)
  • [40] DERIVATION OF THE BRUECKNER MANY-BODY THEORY
    GOLDSTONE, J
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1957, 239 (1217): : 267 - 279