Nambu-covariant many-body theory I: Perturbative approximations

被引:1
|
作者
Drissi, M. [1 ,2 ]
Rios, A. [2 ,3 ,4 ]
Barbieri, C. [2 ,5 ,6 ]
机构
[1] TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
[2] Univ Surrey, Dept Phys, Guildford GU2 7XH, England
[3] Univ Barcelona UB, Dept Fis Quant & Astrofis FQA, Marti & Franques 1, E-08028 Barcelona, Spain
[4] Univ Barcelona IEEC UB, Inst Ciencies Cosmos ICCUB, Marti & Franques 1, E-08028 Barcelona, Spain
[5] Univ Milan, Dipartimento Fis Aldo Pontremoli, Via Celoria 16, I-20133 Milan, Italy
[6] Sez Milano, INFN, Via Celoria 16, I-20133 Milan, Italy
关键词
Quantum many-body theory; Symmetry-breaking; Perturbation theory; Superfluidity; SUPERFLUID SYSTEMS; ENTROPY PRINCIPLE; NEUTRON-STARS; RENORMALIZATION; GENERATION; DIAGRAMS; NUCLEI; MATTER; RULES;
D O I
10.1016/j.aop.2024.169729
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Symmetry-breaking considerations play an important role in allowing reliable and accurate predictions of complex systems in quantum many-body simulations. The general theory perturbations in symmetry-breaking phases is nonetheless intrinsically more involved than in unbroken phase due to non-vanishing anomalous Green's functions or anomalous quasiparticle interactions. In the present paper, we develop a formulation of many-body theory at nonzero temperature which is explicitly covariant with respect to a group containing Bogoliubov transformations. Based on the concept of Nambu tensors, we derive a factorisation of standard Feynman diagrams that is valid for a general Hamiltonian. The resulting factorised amplitudes are indexed over the set of un-oriented Feynman diagrams with fully antisymmetric vertices. argue that, within this framework, the design of symmetry-breaking many-body approximations is simplified.
引用
收藏
页数:34
相关论文
共 50 条
  • [1] Nambu-covariant many-body theory II: Self-consistent approximations
    Drissi, M.
    Rios, A.
    Barbieri, C.
    ANNALS OF PHYSICS, 2024, 469
  • [2] Perturbative many-body transfer
    Chetcuti, Wayne Jordan
    Sanavio, Claudio
    Lorenzo, Salvatore
    Apollaro, Tony J. G.
    NEW JOURNAL OF PHYSICS, 2020, 22 (03)
  • [3] ADIABATIC APPROXIMATIONS IN FUNCTIONAL INTEGRAL MANY-BODY THEORY
    SHERRINGTON, D
    PHYSICS LETTERS A, 1972, A 42 (02) : 135 - +
  • [4] THE COVARIANT MANY-BODY PROBLEM IN QUANTUMELECTRODYNAMICS
    BARUT, AO
    JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (04) : 1091 - 1095
  • [5] TEST OF CLOSURE APPROXIMATIONS IN EQUILIBRIUM CLASSICAL MANY-BODY THEORY
    ROOT, LJ
    STILLINGER, FH
    WASHINGTON, GE
    JOURNAL OF CHEMICAL PHYSICS, 1988, 88 (12): : 7791 - 7798
  • [6] Towards numerical implementation of the relativistically covariant many-body perturbation theory
    Hedendahl, Daniel
    Lindgren, Ingvar
    Salomonson, Sten
    CANADIAN JOURNAL OF PHYSICS, 2009, 87 (07) : 817 - 824
  • [7] NON-PERTURBATIVE MANY-BODY THEORY OF THE OPTICAL NONLINEARITIES IN SEMICONDUCTORS
    HAUG, H
    SCHMITTRINK, S
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1984, 313 (1525): : 221 - 227
  • [8] COMMON APPROXIMATIONS IN MANY-BODY SYSTEMS
    REVZEN, M
    TRAINOR, LEH
    CANADIAN JOURNAL OF PHYSICS, 1969, 47 (08) : 847 - &
  • [9] Relativistically Covariant Many-Body Perturbation Procedure
    Lindgren, Ingvar
    Salomonson, Sten
    Hedendahl, Daniel
    ADVANCES IN THE THEORY OF ATOMIC AND MOLECULAR SYSTEMS: CONCEPTUAL AND COMPUTATIONAL ADVANCES IN QUANTUM CHEMISTRY, 2009, 19 : 93 - 113
  • [10] PERTURBATIVE MANY-BODY APPROACHES TO FINITE NUCLEI
    HJORTHJENSEN, M
    ENGELAND, T
    HOLT, A
    OSNES, E
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1994, 242 (1-3): : 37 - 69