Invariant Measures as Obstructions to Attractors in Dynamical Systems and Their Role in Nonholonomic Mechanics

被引:0
|
作者
Garcia-Naranjo, Luis C. [1 ]
Ortega, Rafael [2 ]
Urena, Antonio J. [2 ]
机构
[1] Univ Padua, Dipartimento Matemat Tullio Levi Civita, Via Trieste 63, I-35121 Padua, Italy
[2] Univ Granada, Fac Ciencias, Dept Matemat Aplicada, Granada 18071, Spain
来源
REGULAR & CHAOTIC DYNAMICS | 2024年 / 29卷 / 05期
关键词
invariant measures; attractors; nonholonomic systems; Suslov problem; GEOMETRY; FLOWS;
D O I
10.1134/S156035472456003X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present some results on the absence of a wide class of invariant measures for dynamical systems possessing attractors. We then consider a generalization of the classical nonholonomic Suslov problem which shows how previous investigations of existence of invariant measures for nonholonomic systems should necessarily be extended beyond the class of measures with strictly positive \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<^>{1}$$\end{document} densities if one wishes to determine dynamical obstructions to the presence of attractors.
引用
收藏
页码:751 / 763
页数:13
相关论文
共 50 条
  • [41] SRB measures for attractors with continuous invariant splittings
    Zeya Mi
    Yongluo Cao
    Dawei Yang
    Mathematische Zeitschrift, 2018, 288 : 135 - 165
  • [42] SRB measures for attractors with continuous invariant splittings
    Mi, Zeya
    Cao, Yongluo
    Yang, Dawei
    MATHEMATISCHE ZEITSCHRIFT, 2018, 288 (1-2) : 135 - 165
  • [43] Justifying typicality measures of Boltzmannian statistical mechanics and dynamical systems
    Werndl, Charlotte
    STUDIES IN HISTORY AND PHILOSOPHY OF MODERN PHYSICS, 2013, 44 (04): : 470 - 479
  • [44] On boundaries of attractors in dynamical systems
    Niralda, Nitha P. C.
    Mathew, Sunil
    Secelean, Nicolae Adrian
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 94
  • [45] Attractors and basins of dynamical systems
    Denes, Attila
    Makay, Geza
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2011, (20) : 1 - 11
  • [46] Attractors of ensembles of dynamical systems
    Bobylev, NA
    Zalozhnev, AY
    Klykov, AY
    AUTOMATION AND REMOTE CONTROL, 1999, 60 (02) : 149 - 155
  • [47] Attractors for lattice dynamical systems
    Bates, PW
    Lu, KN
    Wang, BX
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (01): : 143 - 153
  • [48] On the connectedness of attractors for dynamical systems
    Gobbino, M
    Sardella, M
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 133 (01) : 1 - 14
  • [49] Hidden attractors in dynamical systems
    Dudkowski, Dawid
    Jafari, Sajad
    Kapitaniak, Tomasz
    Kuznetsov, Nikolay V.
    Leonov, Gennady A.
    Prasad, Awadhesh
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2016, 637 : 1 - 50
  • [50] Invariant measures of nonholonomic flows with internal degrees of freedom
    Zenkov, DV
    Bloch, AM
    NONLINEARITY, 2003, 16 (05) : 1793 - 1807