Invariant Measures as Obstructions to Attractors in Dynamical Systems and Their Role in Nonholonomic Mechanics

被引:0
|
作者
Garcia-Naranjo, Luis C. [1 ]
Ortega, Rafael [2 ]
Urena, Antonio J. [2 ]
机构
[1] Univ Padua, Dipartimento Matemat Tullio Levi Civita, Via Trieste 63, I-35121 Padua, Italy
[2] Univ Granada, Fac Ciencias, Dept Matemat Aplicada, Granada 18071, Spain
来源
REGULAR & CHAOTIC DYNAMICS | 2024年 / 29卷 / 05期
关键词
invariant measures; attractors; nonholonomic systems; Suslov problem; GEOMETRY; FLOWS;
D O I
10.1134/S156035472456003X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present some results on the absence of a wide class of invariant measures for dynamical systems possessing attractors. We then consider a generalization of the classical nonholonomic Suslov problem which shows how previous investigations of existence of invariant measures for nonholonomic systems should necessarily be extended beyond the class of measures with strictly positive \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<^>{1}$$\end{document} densities if one wishes to determine dynamical obstructions to the presence of attractors.
引用
收藏
页码:751 / 763
页数:13
相关论文
共 50 条
  • [1] Invariant measures for Cantor dynamical systems
    Bezuglyi, Sergey
    Karpel, Olena
    DYNAMICS: TOPOLOGY AND NUMBERS, 2020, 744 : 259 - 295
  • [2] Invariant measures for random dynamical systems
    Horbacz, Katarzyna
    DISSERTATIONES MATHEMATICAE, 2008, (451) : 5 - +
  • [3] Spherical and Planar Ball Bearings — Nonholonomic Systems with Invariant Measures
    Vladimir Dragović
    Borislav Gajić
    Božidar Jovanović
    Regular and Chaotic Dynamics, 2022, 27 : 424 - 442
  • [4] Spherical and Planar Ball Bearings - Nonholonomic Systems with Invariant Measures
    Dragovic, Vladimir
    Gajic, Borislav
    Jovanovic, Bozidar
    REGULAR & CHAOTIC DYNAMICS, 2022, 27 (04): : 424 - 442
  • [5] Spherical and planar ball bearings – nonholonomic systems with invariant measures
    Dragović, Vladimir
    Gajić, Borislav
    Jovanović, Božidar
    arXiv, 2022,
  • [6] ON UNBOUNDED INVARIANT MEASURES OF STOCHASTIC DYNAMICAL SYSTEMS
    Brofferio, Sara
    Buraczewski, Dariusz
    ANNALS OF PROBABILITY, 2015, 43 (03): : 1456 - 1492
  • [7] Invariant measures for random dynamical systems on the circle
    Crauel, H
    ARCHIV DER MATHEMATIK, 2002, 78 (02) : 145 - 154
  • [8] Invariant measures for random dynamical systems on the circle
    H. Crauel
    Archiv der Mathematik, 2002, 78 : 145 - 154
  • [9] When distribution measures are invariant for dynamical systems
    Fu, Heman
    Kuang, Rui
    Ma, Dongkui
    MONATSHEFTE FUR MATHEMATIK, 2025, 206 (02): : 317 - 341
  • [10] Symbolic images and invariant measures of dynamical systems
    Osipenko, George
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2010, 30 : 1217 - 1237