Wickets in 3-uniform hypergraphs

被引:0
|
作者
Solymosi, Jozsef [1 ,2 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC, Canada
[2] Obuda Univ, Budapest, Hungary
基金
加拿大自然科学与工程研究理事会;
关键词
Linear hypergraphs; Hypergraph regularity; Turan type problems in hypergraphs;
D O I
10.1016/j.disc.2024.114029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we consider a Tur & aacute;n-type problem in hypergraphs. What is the maximum number of edges if we forbid a subgraph? Let H ( 3 ) n be a 3-uniform linear hypergraph, i.e. any two edges have at most one vertex common. A special hypergraph, called wicket , is formed by three rows and two columns of a 3 x 3 point matrix. We describe two linear hypergraphs that if we forbid either of them in H n ( 3 ) , then the hypergraph is sparse, i.e. the number of its edges is o ( n 2 ) . Since both contain a wicket, it implies a conjecture of Gy & aacute;rf & aacute;s and S & aacute;rk & ouml;zy that wicket-free hypergraphs are sparse. (c) 2024 Elsevier B.V. All rights reserved.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Counting small cliques in 3-uniform hypergraphs
    Peng, Y
    Rödl, V
    Skokan, J
    COMBINATORICS PROBABILITY & COMPUTING, 2005, 14 (03): : 371 - 413
  • [32] Edge-coloring of 3-uniform hypergraphs
    Obszarski, Pawel
    Jastrzebski, Andrzej
    DISCRETE APPLIED MATHEMATICS, 2017, 217 : 48 - 52
  • [33] On Generalized Ramsey Numbers for 3-Uniform Hypergraphs
    Dudek, Andrzej
    Mubayi, Dhruv
    JOURNAL OF GRAPH THEORY, 2014, 76 (03) : 217 - 223
  • [34] HAMILTON DECOMPOSITIONS OF COMPLETE 3-UNIFORM HYPERGRAPHS
    VERRALL, H
    DISCRETE MATHEMATICS, 1994, 132 (1-3) : 333 - 348
  • [35] Line graphs of linear 3-uniform hypergraphs
    Metelsky, YM
    Tyshkevich, RI
    DOKLADY AKADEMII NAUK BELARUSI, 1996, 40 (03): : 26 - 30
  • [36] Disjoint perfect matchings in 3-uniform hypergraphs
    Lu, Hongliang
    Yu, Xingxing
    Zhang, Li
    JOURNAL OF GRAPH THEORY, 2018, 88 (02) : 284 - 293
  • [37] Decomposing Complete 3-Uniform Hypergraphs into Cycles
    Guanru LI
    Yiming LEI
    Yuansheng YANG
    Jirimutu
    Journal of Mathematical Research with Applications, 2016, 36 (01) : 9 - 14
  • [38] On the rainbow matching conjecture for 3-uniform hypergraphs
    Jun Gao
    Hongliang Lu
    Jie Ma
    Xingxing Yu
    Science China Mathematics, 2022, 65 : 2423 - 2440
  • [39] On the rainbow matching conjecture for 3-uniform hypergraphs
    Jun Gao
    Hongliang Lu
    Jie Ma
    Xingxing Yu
    Science China(Mathematics), 2022, 65 (11) : 2423 - 2440
  • [40] Squares of Hamiltonian cycles in 3-uniform hypergraphs
    Bedenknecht, Wiebke
    Reiher, Christian
    RANDOM STRUCTURES & ALGORITHMS, 2020, 56 (02) : 339 - 372