LMACL: Improving Graph Collaborative Filtering with Learnable Model Augmentation Contrastive Learning

被引:2
|
作者
Liu, Xinru [1 ]
Hao, Yongjing [2 ]
Zhao, Lei [2 ]
Liu, Guanfeng [3 ]
Sheng, Victor S. [4 ]
Zhao, Pengpeng [2 ]
机构
[1] Soochow Univ, Sch Comp Sci & Technol, Suzhou, Jiangsu, Peoples R China
[2] Soochow Univ, Suzhou, Jiangsu, Peoples R China
[3] Macquarie Univ, Sydney, NSW, Australia
[4] Texas Tech Univ, Lubbock, TX USA
关键词
Recommender systems; collaborative filtering; graph neural network; contrastive learning;
D O I
10.1145/3657302
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Graph collaborative filtering (GCF) has achieved exciting recommendation performance with its ability to aggregate high-order graph structure information. Recently, contrastive learning (CL) has been incorporated into GCF to alleviate data sparsity and noise issues. However, most of the existing methods employ random or manual augmentation to produce contrastive views that may destroy the original topology and amplify the noisy effects. We argue that such augmentation is insufficient to produce the optimal contrastive view, leading to suboptimal recommendation results. In this article, we proposed a LearnableModel Augmentation Contrastive Learning (LMACL) framework for recommendation, which effectively combines graph-level and node-level collaborative relations to enhance the expressiveness of collaborative filtering (CF) paradigm. Specifically, we first use the graph convolution network (GCN) as a backbone encoder to incorporate multihop neighbors into graph-level original node representations by leveraging the high-order connectivity in user-item interaction graphs. At the same time, we treat the multi-head graph attention network (GAT) as an augmentation view generator to adaptively generate high-quality node-level augmented views. Finally, joint learning endows the end-to-end training fashion. In this case, the mutual supervision and collaborative cooperation of GCN and GAT achieves learnable model augmentation. Extensive experiments on several benchmark datasets demonstrate that LMACL provides a significant improvement over the strongest baseline in terms of Recall and NDCG by 2.5%-3.8% and 1.6%-4.0%, respectively. Our model implementation code is available at https://github.com/LiuHsinx/LMACL.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Mixed Augmentation Contrastive Learning for Graph Recommendation System
    Dong, Zhuolun
    Yang, Yan
    Zhong, Yingli
    WEB AND BIG DATA, APWEB-WAIM 2024, PT II, 2024, 14962 : 130 - 143
  • [42] Spectral Feature Augmentation for Graph Contrastive Learning and Beyond
    Zhang, Yifei
    Zhu, Hao
    Song, Zixing
    Koniusz, Piotr
    King, Irwin
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 9, 2023, : 11289 - 11297
  • [43] Features based adaptive augmentation for graph contrastive learning
    Ali, Adnan
    Li, Jinlong
    DIGITAL SIGNAL PROCESSING, 2024, 145
  • [44] AAGCN: An adaptive data augmentation for graph contrastive learning
    Qin, Peng
    Lu, Yaochun
    Chen, Weifu
    Li, Defang
    Feng, Guocan
    PATTERN RECOGNITION, 2025, 163
  • [45] Invariant Risk Minimization Augmentation for Graph Contrastive Learning
    Qin, Peng
    Chen, Weifu
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT IV, 2025, 15034 : 135 - 147
  • [46] Temporal Graph Representation Learning with Adaptive Augmentation Contrastive
    Chen, Hongjiang
    Jiao, Pengfei
    Tang, Huijun
    Wu, Huaming
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT II, 2023, 14170 : 683 - 699
  • [47] Graph contrastive learning for recommendation with generative data augmentation
    Li, Xiaoge
    Wang, Yin
    Wang, Yihan
    An, Xiaochun
    MULTIMEDIA SYSTEMS, 2024, 30 (04)
  • [48] Contrastive learning for fair graph representations via counterfactual graph augmentation
    Li, Chengyu
    Cheng, Debo
    Zhang, Guixian
    Zhang, Shichao
    KNOWLEDGE-BASED SYSTEMS, 2024, 305
  • [49] Graph Contrastive Learning With Adaptive Proximity-Based Graph Augmentation
    Zhuo, Wei
    Tan, Guang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (10) : 14301 - 14314
  • [50] Heterogeneous collaborative filtering contrastive learning for social recommendation
    Meng, Chaojun
    Pan, Changfan
    Shu, Hongji
    Wang, Qing
    Guo, Hanghui
    Zhu, Jia
    APPLIED SOFT COMPUTING, 2025, 173