Convergence towards High-Speed Steady States Using High-Order Accurate Shock-Capturing Schemes

被引:0
|
作者
Assis, Juan C. [1 ]
Santos, Ricardo D. [1 ]
Schuabb, Mateus S. [2 ]
Falcao, Carlos E. G. [3 ]
Freitas, Romulo B. [4 ]
Alves, Leonardo S. de B. [3 ]
机构
[1] Univ Fed Fluminense, Programa Posgrad Engn Mecan, BR-24210240 Niteroi, RJ, Brazil
[2] Ohio State Univ, Dept Mech & Aerosp Engn, Columbus, OH 43210 USA
[3] Univ Fed Santa Maria, Dept Engn Mecan, BR-97105900 Santa Maria, RS, Brazil
[4] Ctr Fed Educ Tecnol Celso Suckow Fonseca, BR-26041271 Nova Iguacu, RJ, Brazil
关键词
TVD schemes; WENO schemes; residue convergence; increment convergence; HIGH-RESOLUTION SCHEMES; STRONG-STABILITY; EFFICIENT IMPLEMENTATION; GRID GENERATION; WENO SCHEMES; EQUATIONS; BOUNDARY; EXPLICIT;
D O I
10.3390/fluids9060133
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Creating time-marching unsteady governing equations for a steady state in high-speed flows is not a trivial task. Residue convergence in time cannot be achieved when using most low- and high-order spatial discretization schemes. Recently, high-order, weighted, essentially non-oscillatory schemes have been specially designed for steady-state simulations. They have been shown to be capable of achieving machine precision residues when simulating the Euler equations under canonical coordinates. In the present work, we review these schemes and show that they can also achieve machine residues when simulating the Navier-Stokes equations under generalized coordinates. This is carried out by considering three supersonic flows of perfect fluids, namely the flow upstream a cylinder, the flow over a blunt wedge, and the flow over a compression ramp.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Assessment of a high-order shock-capturing central-difference scheme for hypersonic turbulent flow simulations
    Sciacovelli, Luca
    Passiatore, Donatella
    Cinnella, Paola
    Pascazio, Giuseppe
    COMPUTERS & FLUIDS, 2021, 230
  • [42] A shock-capturing methodology based on adaptative spatial filtering for high-order non-linear computations
    Bogey, Christophe
    de Cacqueray, Nicolas
    Bailly, Christophe
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (05) : 1447 - 1465
  • [43] On Construction of Combined Shock-Capturing Finite-Difference Schemes of High Accuracy
    Ostapenko, Vladimir
    Kovyrkina, Olyana
    NUMERICAL ANALYSIS AND ITS APPLICATIONS (NAA 2016), 2017, 10187 : 525 - 532
  • [44] HIGH-RESOLUTION SHOCK-CAPTURING SCHEMES FOR INVISCID AND VISCOUS HYPERSONIC FLOWS
    YEE, HC
    KLOPFER, GH
    MONTAGNE, JL
    JOURNAL OF COMPUTATIONAL PHYSICS, 1990, 88 (01) : 31 - 61
  • [46] Using high-order accurate essentially nonoscillatory schemes for aeroacoustic applications
    Casper, J
    Meadows, KR
    AIAA JOURNAL, 1996, 34 (02) : 244 - 250
  • [47] Dissipative issue of high-order shock capturing schemes with non-convex equations of state
    Heuze, Olivier
    Jaouen, Stephane
    Jourdren, Herve
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (03) : 833 - 860
  • [48] Steady discrete shocks of high-order RBC schemes
    Lerat, Alain
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 252 : 350 - 364
  • [49] On entropy generation and dissipation of kinetic energy in high-resolution shock-capturing schemes
    Thornber, B.
    Drikakis, D.
    Williams, R. J. R.
    Youngs, D.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (10) : 4853 - 4872
  • [50] High-order accurate numerical schemes for the parabolic equation
    Flouri, ET
    Ekaterinaris, JA
    Kampanis, NA
    JOURNAL OF COMPUTATIONAL ACOUSTICS, 2005, 13 (04) : 613 - 639