Large-Scale Study of Temporal Shift in Health Insurance Claims

被引:0
|
作者
Ji, Christina X. [1 ,2 ]
Alaa, Ahmed M. [3 ,4 ]
Sontag, David [1 ,2 ]
机构
[1] MIT, CSAIL, Cambridge, MA 02139 USA
[2] MIT, IMES, Cambridge, MA 02139 USA
[3] Univ Calif Berkeley, Berkeley, CA USA
[4] UCSF, San Francisco, CA USA
关键词
NON-STATIONARITY; UNITED-STATES; DATASET SHIFT; COVID-19; PREDICTION; EQUATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most machine learning models for predicting clinical outcomes are developed using historical data. Yet, even if these models are deployed in the near future, dataset shift over time may result in less than ideal performance. To capture this phenomenon, we consider a task-that is, an outcome to be predicted at a particular time point-to be non-stationary if a historical model is no longer optimal for predicting that outcome. We build an algorithm to test for temporal shift either at the population level or within a discovered sub-population. Then, we construct a meta-algorithm to perform a retrospective scan for temporal shift on a large collection of tasks. Our algorithms enable us to perform the first comprehensive evaluation of temporal shift in healthcare to our knowledge. We create 1,010 tasks by evaluating 242 healthcare outcomes for temporal shift from 2015 to 2020 on a health insurance claims dataset. 9.7% of the tasks show temporal shifts at the population level, and 93.0% have some sub-population affected by shifts. We dive into case studies to understand the clinical implications. Our analysis highlights the widespread prevalence of temporal shifts in healthcare.
引用
收藏
页码:243 / +
页数:39
相关论文
共 50 条
  • [21] A Large-Scale Study of Misophonia
    Rouw, Romke
    Erfanian, Mercede
    JOURNAL OF CLINICAL PSYCHOLOGY, 2018, 74 (03) : 453 - 479
  • [22] A LARGE-SCALE RETROSPECTIVE STUDY OF EMERGENCY DEPARTMENT VISITS OR HOSPITALIZATIONS FOR ANAPHYLAXIS AMONG PATIENTS WITH EMPLOYER-SPONSORED HEALTH INSURANCE
    Landsman-Blumberg, P.
    Wei, W.
    Douglas, D.
    Smith, D. M.
    Camargo, C. A.
    VALUE IN HEALTH, 2012, 15 (04) : A60 - A60
  • [23] Scalable Motif Counting for Large-scale Temporal Graphs
    Gao, Zhongqiang
    Cheng, Chuanqi
    Yu, Yanwei
    Cao, Lei
    Huang, Chao
    Dong, Junyu
    2022 IEEE 38TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2022), 2022, : 2656 - 2668
  • [24] Large-scale temporal analysis of computer and information science
    Sandor Soos
    George Kampis
    László Gulyás
    The European Physical Journal Special Topics, 2013, 222 : 1441 - 1465
  • [25] Large-scale temporal analysis of computer and information science
    Soos, Sandor
    Kampis, George
    Gulyas, Laszlo
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2013, 222 (06): : 1441 - 1465
  • [26] Large-scale aspects and temporal evolution of pulsating aurora
    Jones, S. L.
    Lessard, M. R.
    Rychert, K.
    Spanswick, E.
    Donovan, E.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2011, 116
  • [27] Large-Scale Author Verification: Temporal and Topical Influences
    van Dam, Michiel
    Hauff, Claudia
    SIGIR'14: PROCEEDINGS OF THE 37TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2014, : 1039 - 1042
  • [28] Temporal Binary Coding for Large-Scale Video Search
    Xia, Ke
    Ma, Yuqing
    Liu, Xianglong
    Mu, Yadong
    Liu, Li
    PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, : 333 - 341
  • [29] Temporal variations in the magnetic network large-scale dynamics
    Meunier, N. (meunier@bagn.obs-mip.fr), 1600, EDP Sciences (442):
  • [30] Temporal variations in the magnetic network large-scale dynamics
    Meunier, N
    ASTRONOMY & ASTROPHYSICS, 2005, 442 (02): : 693 - 702