Interval Type-2 Relative Entropy Fuzzy C-Means clustering

被引:30
|
作者
Zarinbal, M. [1 ]
Zarandi, M. H. Fazel [1 ,3 ]
Turksen, I. B. [2 ,3 ]
机构
[1] Amirkabir Univ Technol, Dept Ind Engn, Tehran, Iran
[2] TOBB Econ & Technol Univ, Ankara, Turkey
[3] Univ Toronto, Knowledge Intelligent Syst Lab, Toronto, ON, Canada
关键词
Interval Type-2 fuzzy set theory; Interval arithmetic; Relative entropy; Fuzzy c-means clustering; Interval Type-2 Relative Entropy Fuzzy; C-Means clustering; MEANS ALGORITHM; UNCERTAINTY; CONTROLLERS; REGRESSION; VALUES;
D O I
10.1016/j.ins.2014.02.066
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Fuzzy set theory especially Type-2 fuzzy set theory provides an efficient tool for handling uncertainties and vagueness in real world observations. Among various clustering techniques, Type-2 fuzzy clustering methods are the most effective methods in the case of having no prior knowledge about observations. While uncertainties in Type-2 fuzzy clustering parameters are investigated by researchers, uncertainties associated with membership degrees are not very well discussed in the literature. In this paper, investigating the latter uncertainties is our concern and Interval Type-2 Relative Entropy Fuzzy C-Means (IT2 REFCM) clustering method is proposed. The computational complexity of the proposed method is discussed and its performance is examined using several experiments. The obtained results show that the proposed method has a very good ability in detecting noises and assignment of suitable membership degrees to observations. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:49 / 72
页数:24
相关论文
共 50 条
  • [41] A genetic type-2 fuzzy C-means clustering approach to M-FISH segmentation
    Dzung Dinh Nguyen
    Long Thanh Ngo
    Watada, Junzo
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2014, 27 (06) : 3111 - 3122
  • [42] Rough Possibilistic Type-2 Fuzzy C-Means clustering for MR brain image segmentation
    Sarkar, Jnanendra Prasad
    Saha, Indrajit
    Maulik, Ujjwal
    APPLIED SOFT COMPUTING, 2016, 46 : 527 - 536
  • [43] A New Fuzzy c-Means Clustering Algorithm for Interval Data
    Jin, Yan
    Ma, Jianghong
    2013 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE (ICCSAI 2013), 2013, : 156 - 159
  • [44] Fuzzy c-means clustering methods for symbolic interval data
    de Carvalho, Francisco de A. T.
    PATTERN RECOGNITION LETTERS, 2007, 28 (04) : 423 - 437
  • [45] Interval kernel Fuzzy C-Means clustering of incomplete data
    Li, Tianhao
    Zhang, Liyong
    Lu, Wei
    Hou, Hui
    Liu, Xiaodong
    Pedrycz, Witold
    Zhong, Chongquan
    NEUROCOMPUTING, 2017, 237 : 316 - 331
  • [46] Alternate PSO-Based Adaptive Interval Type-2 Intuitionistic Fuzzy C-Means Clustering Algorithm for Color Image Segmentation
    Zhao, Feng
    Chen, Yilei
    Liu, Hanqiang
    Fan, Jiulun
    IEEE ACCESS, 2019, 7 : 64028 - 64039
  • [47] Ant Colony Optimization of Interval Type-2 Fuzzy C-Means with Subtractive Clustering and Multi-Round Sampling for Large Data
    Qaiyum, Sana
    Aziz, Izzatdin
    Jaafar, Jafreezal
    Wong, Adam Kai Leung
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (01) : 47 - 57
  • [48] Online System Identification for Nonlinear Uncertain Dynamical Systems Using Recursive Interval Type-2 TS Fuzzy C-means Clustering
    Al-Mahturi, Ayad
    Santoso, Fendy
    Garratt, Matthew A.
    Anavatti, Sreenatha G.
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 1695 - 1701
  • [49] GPU-based Acceleration of Interval Type-2 Fuzzy C-Means Clustering for Satellite Imagery Land-Cover Classification
    Long Thanh Ngo
    Dinh Sinh Mai
    Mau Uyen Nguyen
    2012 12TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS (ISDA), 2012, : 992 - 997
  • [50] A Method of Remote Sensing Image Auto Classification Based on Interval Type-2 Fuzzy C-Means
    Yu, Xianchuan
    Zhou, Wei
    He, Hui
    2014 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2014, : 223 - 228