Special Session: Reliability Assessment Recipes for DNN Accelerators

被引:1
|
作者
Ahmadilivani, Mohammad Hasan [1 ]
Bosio, Alberto [2 ]
Deveautour, Bastien [2 ]
dos Santos, Fernando Fernandes [3 ]
Guerrero-Balaguera, Juan-David [4 ]
Jenihhin, Maksim [1 ]
Kritikakou, Angeliki [3 ]
Sierra, Robert Limas [4 ]
Pappalardo, Salvatore [2 ]
Raik, Jaan [1 ]
Condia, Josie E. Rodriguez [4 ]
Reorda, Matteo Sonza [4 ]
Taheri, Mahdi [1 ]
Traiola, Marcello [3 ]
机构
[1] Tallinn Univ Technol, Tallinn, Estonia
[2] Ecole Cent Lyon, CPE Lyon, INL, Ecully, France
[3] Univ Rennes, CNRS, Irma, IRISA,UMR 6074, F-35000 Rennes, France
[4] Politecn Torino, Turin, Italy
关键词
deep neural networks; approximate computing; fault simulation; error emulation; reliability; resiliency assessment;
D O I
10.1109/VTS60656.2024.10538707
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Reliability assessment is mandatory to guarantee the correct behavior of Deep Neural Network (DNN) hardware accelerators in safety-critical applications. While fault injection stands out as a well-established, practical and robust method for reliability assessment, it is still a very time-consuming process. This paper contributes with three recipes for optimizing the efficiency of the reliability assessment: a) hybrid analytical and hierarchical FI-based reliability assessment for systolic-array-based DNN accelerators; b) mixing techniques for the reliability assessment of in-chip AI accelerators in GPUs; c) reliability assessment of DNN hardware accelerators through physical fault injection. The experimental results demonstrate the efficiency of the proposed methods applied to their target DNN HW accelerator platforms.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Heterogeneous Dataflow Accelerators for Multi-DNN Workloads
    Kwon, Hyoukjun
    Lai, Liangzhen
    Pellauer, Michael
    Krishna, Tushar
    Chen, Yu-Hsin
    Chandra, Vikas
    2021 27TH IEEE INTERNATIONAL SYMPOSIUM ON HIGH-PERFORMANCE COMPUTER ARCHITECTURE (HPCA 2021), 2021, : 71 - 83
  • [42] Coordinated Batching and DVFS for DNN Inference on GPU Accelerators
    Nabavinejad, Seyed Morteza
    Reda, Sherief
    Ebrahimi, Masoumeh
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022, 33 (10) : 2496 - 2508
  • [43] Exploring RISC-V Based DNN Accelerators
    Liu, Qiankun
    Amiri, Sam
    Ost, Luciano
    2024 IEEE INTERNATIONAL CONFERENCE ON OMNI-LAYER INTELLIGENT SYSTEMS, COINS 2024, 2024, : 30 - 34
  • [44] Exploiting the Approximate Computing Paradigm with DNN Hardware Accelerators
    Russo, Enrico
    Palesi, Maurizio
    Monteleone, Salvatore
    Patti, Davide
    Landhiri, Habiba
    Ascia, Giuseppe
    Catania, Vincenzo
    2022 11TH MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 2022, : 379 - 382
  • [45] Thermal-Aware Design for Approximate DNN Accelerators
    Zervakis, Georgios
    Anagnostopoulos, Iraklis
    Salamin, Sami
    Spantidi, Ourania
    Roman-Ballesteros, Isai
    Henkel, Joerg
    Amrouch, Hussam
    IEEE TRANSACTIONS ON COMPUTERS, 2022, 71 (10) : 2687 - 2697
  • [46] A smart framework for the availability and reliability assessment and management of accelerators technical facilities
    Serio, L.
    Antonello, F.
    Baraldi, P.
    Castellano, A.
    Gentile, U.
    Zio, E.
    9TH INTERNATIONAL PARTICLE ACCELERATOR CONFERENCE (IPAC18), 2018, 1067
  • [47] ICCAD Special Session Paper Automated Generation of Integrated Digital and Spiking Neuromorphic Machine Learning Accelerators
    Curzel, Serena
    Agostini, Nicolas Bohm
    Song, Shihao
    Dagli, Ismet
    Limaye, Ankur
    Tan, Cheng
    Minutoli, Marco
    Castellana, Vito Giovanni
    Amatya, Vinay
    Manzano, Joseph
    Das, Anup
    Ferrandi, Fabrizio
    Tumeo, Antonino
    2021 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN (ICCAD), 2021,
  • [48] A Communication-Centric Approach for Designing Flexible DNN Accelerators
    Kwon, Hyoukjun
    Samajdar, Ananda
    Krishna, Tushar
    IEEE MICRO, 2018, 38 (06) : 25 - 35
  • [49] SPECIAL RECIPES FOR DIABETIC PATIENTS
    Mather, Nellie I.
    AMERICAN JOURNAL OF NURSING, 1923, 23 (08) : 648 - 648
  • [50] Special session
    1600, (73):