BOUNDEDNESS IN AN ATTRACTION-REPULSION CHEMOTAXIS SYSTEM WITH BOTH NONLINEAR SIGNAL PRODUCTION AND CONSUMPTION

被引:0
|
作者
Wang, Chang-jian [1 ]
机构
[1] Xinyang Normal Univ, Sch Math & Stat, Xinyang, Peoples R China
来源
关键词
Attraction-repulsion system; nonlinear signal; global boundedness; LARGE TIME BEHAVIOR; KELLER-SEGEL SYSTEM; BLOW-UP; NONRADIAL SOLUTIONS; GLOBAL EXISTENCE; MODEL; STABILIZATION; AGGREGATION;
D O I
10.3934/eect.2024026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the following homogeneous Neumann initial-boundary value problem for a chemotaxis system { ut= triangle u-chi del<middle dot>(u del v) +xi del<middle dot>(u del w), x is an element of ohm, t >0, vt= triangle v-v+v gamma 11,0 = triangle v1-v1+u gamma 2, x is an element of ohm, t >0, wt= triangle w-u gamma 3w, x is an element of ohm, t >0, in a smooth bounded domain Omega C R- n ( n > 2) , where the parameters satisfy chi, xi, gamma 1 , gamma 2 , gamma 3 > 0 . It has been shown that if gamma (1) gamma( 2) < 2/ n and gamma (3) < 2/ n+2 , then the system possesses a global classical solution. In this work, we improve some previous results.
引用
收藏
页码:1287 / 1297
页数:11
相关论文
共 50 条