Deep-learning-based acceleration of critical point calculations

被引:0
|
作者
Jayaprakash, Vishnu [1 ]
Li, Huazhou [1 ]
机构
[1] Univ Alberta, Sch Min & Petr Engn, Dept Civil & Environm Engn, Edmonton, AB, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Phase behaviour; Deep neural networks; Mixture critical points; DIFFERENTIAL EVOLUTION; MIXTURES; EQUATION;
D O I
10.1016/j.ces.2024.120371
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Computation of the critical point of complex fluid mixtures is an important part of understanding their thermodynamic phase behaviour. While algorithms for these calculations are well established, they are often slow when the number of constituting components is large. In this work, we propose a new procedure to significantly accelerate critical point calculations by leveraging deep neural network (DNN) models. A DNN model for critical point predictions of a given mixture is first trained based on the critical points of such a mixture with various compositions. The predictions of the DNN model are then used to initialize both of the commonly used algorithms for mixture critical point calculations: root finding and global minimization. We demonstrate that when using the DNN-based predictions to initialize the root-finding-based and optimization-based algorithms, we can achieve 50-90% and 80-90% reductions in the number of required iterations, respectively.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Deep-learning-based Intrusion Detection with Enhanced Preprocesses
    Lin, Chia-Ju
    Huang, Yueh-Min
    Chen, Ruey-Maw
    SENSORS AND MATERIALS, 2022, 34 (06) : 2391 - 2401
  • [42] Robustness of Deep-Learning-Based RF UAV Detectors
    Elyousseph, Hilal
    Altamimi, Majid
    SENSORS, 2024, 24 (22)
  • [43] A Survey on Deep-Learning-Based Diabetic Retinopathy Classification
    Sebastian, Anila
    Elharrouss, Omar
    Al-Maadeed, Somaya
    Almaadeed, Noor
    DIAGNOSTICS, 2023, 13 (03)
  • [44] Deep-Learning-Based Adaptive Advertising with Augmented Reality
    Moreno-Armendariz, Marco A.
    Calvo, Hiram
    Duchanoy, Carlos A.
    Lara-Cazares, Arturo
    Ramos-Diaz, Enrique
    Morales-Flores, Victor L.
    SENSORS, 2022, 22 (01)
  • [45] A deep-learning-based method of estimating water intake
    Yamada, Yutaro
    Nishimura, Masafumi
    Mineno, Hiroshi
    Saito, Takato
    Kawasaki, Satoshi
    Ikeda, Daizo
    Katagiri, Masaji
    2017 IEEE 41ST ANNUAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE (COMPSAC), VOL 2, 2017, : 96 - 101
  • [46] Deep-Learning-Based Precipitation Observation Quality Control
    Sha, Yingkai
    Gagne, David John
    West, Gregory
    Stull, Roland
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2021, 38 (05) : 1075 - 1091
  • [47] Deep-Learning-Based Detection of Transmission Line Insulators
    Zhang, Jian
    Xiao, Tian
    Li, Minhang
    Zhou, Yucai
    ENERGIES, 2023, 16 (14)
  • [48] Deep-Learning-based Cryptanalysis through Topic Modeling
    Kumar, Kishore
    Tanwar, Sarvesh
    Kumar, Shishir
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2024, 14 (01) : 12524 - 12529
  • [49] Improved Selective Deep-Learning-Based Clustering Ensemble
    Qian, Yue
    Yao, Shixin
    Wu, Tianjun
    Huang, You
    Zeng, Lingbin
    APPLIED SCIENCES-BASEL, 2024, 14 (02):
  • [50] Deep-Learning-Based Approach for Prediction of Algal Blooms
    Zhang, Feng
    Wang, Yuanyuan
    Cao, Minjie
    Sun, Xiaoxiao
    Du, Zhenhong
    Liu, Renyi
    Ye, Xinyue
    SUSTAINABILITY, 2016, 8 (10)