Parameterized Completeness Results for Bayesian Inference

被引:0
|
作者
Bodlaender, Hans L. [1 ]
Donselaar, Nils [2 ]
Kwisthout, Johan [2 ]
机构
[1] Univ Utrecht, Dept Informat & Comp Sci, Princetonpl 5, NL-3508 TB Utrecht, Netherlands
[2] Radboud Univ Nijmegen, Donders Inst Brain Cognit & Behav, Thomas van Aquinostr 4, NL-6525 GD Nijmegen, Netherlands
关键词
Bayesian networks; inference; parameterized complexity theory; COMPLEXITY;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present completeness results for inference in Bayesian networks with respect to two different parameterizations, namely the number of variables and the topological vertex separation number. For this we introduce the parameterized complexity classes W[1]PP and XLPP, which relate to W[1] and XNLP respectively as PP does to NP. The second parameter is intended as a natural translation of the notion of pathwidth to the case of directed acyclic graphs, and as such it is a stronger parameter than the more commonly considered treewidth. Based on a recent conjecture, the completeness results for this parameter suggest that deterministic algorithms for inference require exponential space in terms of pathwidth and by extension treewidth. These results are intended to contribute towards a more precise understanding of the parameterized complexity of Bayesian inference and thus of its required computational resources in terms of both time and space.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Bayesian analysis and inference from QSAR predictive model results
    McDowell, RM
    Jaworska, JS
    SAR AND QSAR IN ENVIRONMENTAL RESEARCH, 2002, 13 (01) : 111 - 125
  • [12] Clustering Results Interpretation of Continuous Variables Using Bayesian Inference
    Balabaevaa, Ksenia
    Kovalchuka, Sergey
    PUBLIC HEALTH AND INFORMATICS, PROCEEDINGS OF MIE 2021, 2021, 281 : 477 - 481
  • [13] Bayesian inference of a negative quantity from positive measurement results
    Calonico, D.
    Levi, F.
    Lorini, L.
    Mana, G.
    METROLOGIA, 2009, 46 (03) : 267 - 271
  • [14] On the Space and Circuit Complexity of Parameterized Problems: Classes and Completeness
    Michael Elberfeld
    Christoph Stockhusen
    Till Tantau
    Algorithmica, 2015, 71 : 661 - 701
  • [15] On the Space and Circuit Complexity of Parameterized Problems: Classes and Completeness
    Elberfeld, Michael
    Stockhusen, Christoph
    Tantau, Till
    ALGORITHMICA, 2015, 71 (03) : 661 - 701
  • [16] BAYESIAN INFERENCE
    MARSHALL, JC
    JOURNAL OF EXPERIMENTAL EDUCATION, 1968, 37 (02): : 71 - 75
  • [17] Fuzzy Inference as a Generalization of the Bayesian Inference
    Koroteev M.V.
    Terelyanskii P.V.
    Ivanyuk V.A.
    Journal of Mathematical Sciences, 2016, 216 (5) : 685 - 691
  • [18] Bayesian inference: an approach to statistical inference
    Fraser, D. A. S.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (04): : 487 - 496
  • [19] XNLP-Completeness for Parameterized Problems on Graphs with a Linear Structure
    Bodlaender, Hans L.
    Groenland, Carla
    Jacob, Hugo
    Jaffke, Lars
    Lima, Paloma T.
    ALGORITHMICA, 2024, : 465 - 506
  • [20] CondConv: Conditionally Parameterized Convolutions for Efficient Inference
    Yang, Brandon
    Bender, Gabriel
    Le, Quoc V.
    Ngiam, Jiquan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32