Testing conditional quantile independence with functional covariate

被引:0
|
作者
Feng, Yongzhen [1 ,2 ]
Li, Jie [3 ,4 ]
Song, Xiaojun [5 ,6 ]
机构
[1] Tsinghua Univ, Ctr Stat Sci, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Ind Engn, Beijing 100084, Peoples R China
[3] Renmin Univ China, Ctr Appl Stat, Beijing 100872, Peoples R China
[4] Renmin Univ China, Sch Stat, Beijing 100872, Peoples R China
[5] Peking Univ, Dept Business Stat & Econometr, Guanghua Sch Management, Beijing 100871, Peoples R China
[6] Peking Univ, Ctr Stat Sci, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
empirical process; functional data; multiplier bootstrap; quantile independence; random projections; GOODNESS-OF-FIT; MULTIPLIER BOOTSTRAP; REGRESSION; INFERENCE;
D O I
10.1093/biomtc/ujae036
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a new non-parametric conditional independence test for a scalar response and a functional covariate over a continuum of quantile levels. We build a Cramer-von Mises type test statistic based on an empirical process indexed by random projections of the functional covariate, effectively avoiding the "curse of dimensionality" under the projected hypothesis, which is almost surely equivalent to the null hypothesis. The asymptotic null distribution of the proposed test statistic is obtained under some mild assumptions. The asymptotic global and local power properties of our test statistic are then investigated. We specifically demonstrate that the statistic is able to detect a broad class of local alternatives converging to the null at the parametric rate. Additionally, we recommend a simple multiplier bootstrap approach for estimating the critical values. The finite-sample performance of our statistic is examined through several Monte Carlo simulation experiments. Finally, an analysis of an EEG data set is used to show the utility and versatility of our proposed test statistic.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] MINIMAX OPTIMAL CONDITIONAL INDEPENDENCE TESTING
    Neykov, Matey
    Balakrishnan, Sivaraman
    Wasserman, Larry
    ANNALS OF STATISTICS, 2021, 49 (04): : 2151 - 2177
  • [22] Testing Conditional Independence of Discrete Distributions
    Canonne, Clement L.
    Diakonikolas, Ilias
    Kane, Daniel M.
    Stewart, Alistair
    2018 INFORMATION THEORY AND APPLICATIONS WORKSHOP (ITA), 2018,
  • [23] Testing conditional independence in diagnostic palaeoepidemiology
    Boldsen, JL
    AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, 2005, 128 (03) : 586 - 592
  • [24] Nonparametric Estimation of Extreme Conditional Quantiles with Functional Covariate
    Feng Yang HE
    Ye Bin CHENG
    Tie Jun TONG
    Acta Mathematica Sinica, 2018, 34 (10) : 1589 - 1610
  • [25] Nonparametric Estimation of Extreme Conditional Quantiles with Functional Covariate
    He, Feng Yang
    Cheng, Ye Bin
    Tong, Tie Jun
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2018, 34 (10) : 1589 - 1610
  • [26] Nonparametric Estimation of Extreme Conditional Quantiles with Functional Covariate
    Feng Yang HE
    Ye Bin CHENG
    Tie Jun TONG
    Acta Mathematica Sinica,English Series, 2018, (10) : 1589 - 1610
  • [27] Nonparametric Estimation of Extreme Conditional Quantiles with Functional Covariate
    Feng Yang He
    Ye Bin Cheng
    Tie Jun Tong
    Acta Mathematica Sinica, English Series, 2018, 34 : 1589 - 1610
  • [28] Testing Conditional Independence Between Latent Variables by Independence Residuals
    Chen, Zhengming
    Qiao, Jie
    Xie, Feng
    Cai, Ruichu
    Hao, Zhifeng
    Zhang, Keli
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (03) : 4586 - 4598
  • [29] Testing Conditional Independence Between Latent Variables by Independence Residuals
    Chen, Zhengming
    Qiao, Jie
    Xie, Feng
    Cai, Ruichu
    Hao, Zhifeng
    Zhang, Keli
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, : 1 - 13
  • [30] TESTING CONDITIONAL INDEPENDENCE USING MAXIMAL NONLINEAR CONDITIONAL CORRELATION
    Huang, Tzee-Ming
    ANNALS OF STATISTICS, 2010, 38 (04): : 2047 - 2091