Automated detection of otosclerosis with interpretable deep learning using temporal bone computed tomography images

被引:0
|
作者
Wang, Zheng [1 ,3 ]
Song, Jian [2 ,4 ]
Lin, Kaibin [1 ,3 ]
Hong, Wei [1 ,3 ]
Mao, Shuang [2 ,4 ]
Wu, Xuewen [2 ,4 ]
Zhang, Jianglin [5 ,6 ,7 ]
机构
[1] Hunan First Normal Univ, Sch Comp Sci, Changsha 410205, Peoples R China
[2] Cent South Univ, Dept Otorhinolaryngol, Xiangya Hosp, Changsha, Hunan, Peoples R China
[3] Key Lab Hunan Prov Stat Learning & Intelligent Com, Changsha 410205, Peoples R China
[4] Prov Key Lab Otolaryngol Crit Dis, Changsha, Hunan, Peoples R China
[5] Southern Univ Sci & Technol, Jinan Univ, Shenzhen Peoples Hosp, Affiliated Hosp 1,Clin Med Coll 2,Dept Dermatol, Shenzhen 518020, Guangdong, Peoples R China
[6] Natl Clin Res Ctr Skin Dis, Candidate Branch, Shenzhen 518020, Guangdong, Peoples R China
[7] Southern Univ Sci & Technol, Jinan Univ, Shenzhen Peoples Hosp, Affiliated Hosp 1,Clin Med Coll 2,Dept Geriatr, Shenzhen 518020, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Computed tomography; Deep learning; Area under the receiver operating; characteristic curve; Temporal bone computed tomography; Interpretability;
D O I
10.1016/j.heliyon.2024.e29670
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Objective: This study aimed to develop an automated detection schema for otosclerosis with interpretable deep learning using temporal bone computed tomography images. Methods: With approval from the institutional review board, we retrospectively analyzed highresolution computed tomography scans of the temporal bone of 182 participants with otosclerosis (67 male subjects and 115 female subjects; average age, 36.42 years) and 157 participants without otosclerosis (52 male subjects and 102 female subjects; average age, 30.61 years) using deep learning. Transfer learning with the pretrained VGG19, Mask RCNN, and EfficientNet models was used. In addition, 3 clinical experts compared the system's performance by reading the same computed tomography images for a subset of 35 unseen subjects. An area under the receiver operating characteristic curve and a saliency map were used to further evaluate the diagnostic performance. Results: In prospective unseen test data, the diagnostic performance of the automatically interpretable otosclerosis detection system at the optimal threshold was 0.97 and 0.98 for sensitivity and specificity, respectively. In comparison with the clinical acumen of otolaryngologists at P < 0.05, the proposed system was not significantly different. Moreover, the area under the receiver operating characteristic curve for the proposed system was 0.99, indicating satisfactory diagnostic accuracy. Conclusion: Our research develops and evaluates a deep learning system that detects otosclerosis at a level comparable with clinical otolaryngologists. Our system is an effective schema for the differential diagnosis of otosclerosis in computed tomography examinations.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Automatic multi-label temporal bone computed tomography segmentation with deep learning
    Zhou, Langtao
    Li, Zhenhua
    INTERNATIONAL JOURNAL OF MEDICAL ROBOTICS AND COMPUTER ASSISTED SURGERY, 2023, 19 (05):
  • [42] Deep learning-based automated detection of retinal diseases using optical coherence tomography images
    Li, Feng
    Chen, Hua
    Liu, Zheng
    Zhang, Xue-Dian
    Jiang, Min-Shan
    Wu, Zhi-Zheng
    Zhou, Kai-Qian
    BIOMEDICAL OPTICS EXPRESS, 2019, 10 (12) : 6204 - 6226
  • [43] Automated femur segmentation from computed tomography images using a deep neural network
    Bjornsson, P. A.
    Helgason, B.
    Palsson, H.
    Sigurdsson, S.
    Gudnason, V.
    Ellingsen, L. M.
    MEDICAL IMAGING 2021: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2021, 11600
  • [44] Automated segmentation of liver and hepatic vessels on portal venous phase computed tomography images using a deep learning algorithm
    Li, Shengwei
    Li, Xiao-Guang
    Zhou, Fanyu
    Zhang, Yumeng
    Bie, Zhixin
    Cheng, Lin
    Peng, Jinzhao
    Li, Bin
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2024, 25 (08):
  • [45] Deep learning-based automated liver contouring using a small sample of radiotherapy planning computed tomography images
    Arjmandi, N.
    Momennezhad, M.
    Arastouei, S.
    Mosleh-Shirazi, M. A.
    Albawi, A.
    Pishevar, Z.
    Nasseri, S.
    RADIOGRAPHY, 2024, 30 (05) : 1442 - 1450
  • [46] Liver segmentation from computed tomography images using cascade deep learning
    Araujo, Jose Denes Lima
    da Cruz, Luana Batista
    Diniz, Joao Otavio Bandeira
    Ferreira, Jonnison Lima
    Silva, Aristofanes Correa
    de Paiva, Anselmo Cardoso
    Gattass, Marcelo
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 140
  • [47] Classification of Computed Tomography Images in Different Slice Positions Using Deep Learning
    Sugimori, Hiroyuki
    JOURNAL OF HEALTHCARE ENGINEERING, 2018, 2018
  • [48] Intelligent diagnosis of coronavirus with computed tomography images using a deep learning model
    Sarac, Marko
    Mravik, Milos
    Jovanovic, Dijana
    Strumberger, Ivana
    Zivkovic, Miodrag
    Bacanin, Nebojsa
    JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (02)
  • [49] Hydrocephalus classification in brain computed tomography medical images using deep learning
    Al Rub, Salsabeel Abu
    Alaiad, Ahmad
    Hmeidi, Ismail
    Quwaider, Muhannad
    Alzoubi, Omar
    SIMULATION MODELLING PRACTICE AND THEORY, 2023, 123
  • [50] Automated fiducial marker detection and localization in volumetric computed tomography images: a three-step hybrid approach with deep learning
    Regodic, Milovan
    Bardosi, Zoltan
    Freysinger, Wolfgang
    JOURNAL OF MEDICAL IMAGING, 2021, 8 (02)