Deploying deep learning models requires taking into consideration neural network metrics such as model size, inference latency, and #FLOPs, aside from inference accuracy. This results in deep learning model designers leveraging multi -objective optimization to design effective deep neural networks in multiple criteria. However, applying multi -objective optimizations to neural architecture search (NAS) is nontrivial because NAS tasks usually have a huge search space, along with a non -negligible searching cost. This requires effective multi -objective search algorithms to alleviate the GPU costs. In this work, we implement a novel multi -objectives optimizer based on a recently proposed meta -algorithm called LaMOO Zhao et al. (2022) on NAS tasks. In a nutshell, LaMOO speedups the search process by learning a model from observed samples to partition the search space and then focusing on promising regions likely to contain a subset of the Pareto frontier. Using LaMOO , we observe an improvement of more than 200% sample efficiency compared to Bayesian optimization and evolutionary -based multi -objective optimizers on different NAS datasets. For example, when combined with LaMOO , qEHVI achieves a 225% improvement in sample efficiency compared to using qEHVI alone in NasBench201. For real -world tasks, LaMOO achieves 97.36% accuracy with only 1.62M #Params on CIFAR10 in only 600 search samples. On ImageNet, our large model reaches 80.4% top -1 accuracy with only 522M #FLOPs.