COMMUTANT LIFTING IN THE SCHUR-AGLER CLASS

被引:1
|
作者
Barik, Sibaprasad [1 ]
Bhattacharjee, Monojit [2 ]
Das, B. Krishna [3 ]
机构
[1] Ben Gurion Univ Negev, Dept Math, POB 653, IL-8410501 Beer Sheva, Israel
[2] Birla Inst Technol & Sci Pilani, Dept Math, KK Birla Goa Campus, Pilani 403726, Goa, India
[3] Indian Inst Technol, Dept Math, Mumbai 400076, India
基金
以色列科学基金会;
关键词
Commutant lifting; intertwining lifting; Schur-Agler functions; hypercontractions; Drury-Arveson space; weighted Bergman spaces; NEVANLINNA-PICK INTERPOLATION; VON-NEUMANN-INEQUALITY; KERNEL-HILBERT-SPACES; THEOREM; FACTORIZATIONS; MULTIPLIERS; DILATIONS;
D O I
10.7900/jot.2022apr27.2372
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we study commutant lifting theorems, more generally intertwining lifting theorems, for weighted Bergman spaces over the unit ball in C-n. In the particular case of the Hardy space over the unit disc and the Drury-Arveson space over the unit ball, our commutant lifting theorem provides an alternative proof of the classical commutant lifting theorems of Sarason and Ball, Trent and Vinnikov.
引用
收藏
页码:399 / 419
页数:21
相关论文
共 50 条