EXISTENCE AND UNIQUENESS OF ZAKHAROV-KUZNETSOV-BURGERS EQUATION WITH CAPUTO-FABRIZIO FRACTIONAL DERIVATIVE

被引:0
|
作者
Bouteraa, Noureddine [1 ,2 ]
机构
[1] Univ Oran 1 Ahmed Benbella, Lab Fundamental & Appl Math Oran LMFAO, Es Senia, Algeria
[2] Oran Grad Sch Econ, Bir El Djir, Algeria
关键词
Generalized Zakharov-Kuznetsov-Burgers equation; existence; fractional derivative; Banach fixed point; TRAVELING-WAVE SOLUTIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we discuss the existence and uniqueness results of a general class of Zakharov-Kuznetsov-Burgers equation. We suggest the generalization via the Caputo-Fabrizio fractional derivative. We introduce some conditions for the existence and uniqueness of solutions and to obtain them, we utilize the concept of the fixed-point theorem.
引用
收藏
页码:59 / 67
页数:9
相关论文
共 50 条
  • [41] On the mathematical model of Rabies by using the fractional Caputo-Fabrizio derivative
    Aydogan, Seher Melike
    Baleanu, Dumitru
    Mohammadi, Hakimeh
    Rezapour, Shahram
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [42] FRACTIONAL DYNAMICS OF CORONAVIRUS WITH COMORBIDITY VIA CAPUTO-FABRIZIO DERIVATIVE
    Bonyah, E.
    Juga, M.
    Fatmawati
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2022,
  • [43] Bifurcation and exact traveling wave solutions for dual power Zakharov-Kuznetsov-Burgers equation with fractional temporal evolution
    Das, Amiya
    Ghosh, Niladri
    Ansari, Khusboo
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (01) : 59 - 69
  • [44] PROPERTIES OF THE CAPUTO-FABRIZIO FRACTIONAL DERIVATIVE AND ITS DISTRIBUTIONAL SETTINGS
    Atanackovic, Teodor M.
    Pilipovic, Stevan
    Zorica, Dusan
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (01) : 29 - 44
  • [45] New Numerical Aspects of Caputo-Fabrizio Fractional Derivative Operator
    Qureshi, Sania
    Rangaig, Norodin A.
    Baleanu, Dumitru
    MATHEMATICS, 2019, 7 (04)
  • [46] Existence and uniqueness results of nonlinear hybrid Caputo-Fabrizio fractional differential equations with periodic boundary conditions
    Monsif, L.
    El Ghordaf, J.
    Oukessou, M.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2025, 43
  • [47] Dynamical survey of the dual power Zakharov-Kuznetsov-Burgers equation with external periodic perturbation
    Das, Amiya
    Saha, Asit
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (05) : 1174 - 1183
  • [48] Analysis of fractional Fokker-Planck equation with Caputo and Caputo-Fabrizio derivatives
    Cetinkaya, Suleyman
    Demir, Ali
    Baleanu, Dumitru
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2021, 48 (02): : 334 - 348
  • [49] A robust stability criterion in the one-dimensional subdiffusion equation with Caputo-Fabrizio fractional derivative
    Temoltzi-Avila, R.
    RICERCHE DI MATEMATICA, 2024, 74 (2) : 1119 - 1136
  • [50] Well-posedness of an initial value problem for fractional diffusion equation with Caputo-Fabrizio derivative
    Nguyen Huy Tuan
    Zhou, Yong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 375