Scan Design Using Unsupervised Machine Learning to Reduce Functional Timing and Area Impact

被引:0
|
作者
Goel, Sandeep Kumar [1 ]
Patidar, Ankita [1 ]
Lee, Frank [2 ]
机构
[1] TSMC, 2851 Junct Ave, San Jose, CA 95134 USA
[2] TSMC, Fab 12,8 Li Hsin Rd, Hsinchu 300, Taiwan
关键词
POWER;
D O I
10.1109/ETS61313.2024.10567936
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Scan design adversely affects design performance, including speed, power, and routing congestion. Scan partitioning and reordering are required to mitigate these effects. We present an unsupervised machine learning-based method for scan partitioning to reduce the total scan wire length and make scan chains as compact as possible. For scan partitioning, we use the K-Means clustering method and reorder flops in a scan chain using the Traveling Salesman Problem (TSP) algorithm. Experimental results for three CPU designs show that significant savings in real wire length (2-3%), as well as a reduction in timing impact (27%), can be achieved with the proposed method compared to the best case obtained by a commercial EDA flow. Additionally, the optimized scan stitching also helped improve Design Rule check (DRC) violations, which aids in design closure.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Detecting abnormal DNS traffic using unsupervised machine learning
    Thi Quynh Nguyen
    Laborde, Romain
    Benzekri, Abdelmalek
    Qu'hen, Bruno
    2020 FOURTH CYBER SECURITY IN NETWORKING CONFERENCE (CSNET), 2020,
  • [42] Detecting insurance fraud using supervised and unsupervised machine learning
    Debener, Joern
    Heinke, Volker
    Kriebel, Johannes
    JOURNAL OF RISK AND INSURANCE, 2023, 90 (03) : 743 - 768
  • [43] Missing value imputation using unsupervised machine learning techniques
    Raja, P. S.
    Thangavel, K.
    SOFT COMPUTING, 2020, 24 (06) : 4361 - 4392
  • [44] Missing value imputation using unsupervised machine learning techniques
    P. S. Raja
    K. Thangavel
    Soft Computing, 2020, 24 : 4361 - 4392
  • [45] Animal Behavior Analysis Using Unsupervised Machine Learning Techniques
    Liu, Jiefei
    Bailey, Derek W.
    Cao, Huiping
    Son, Tran Cao
    Tobin, Colin T.
    JOURNAL OF ANIMAL SCIENCE, 2023, 101 : 2 - 2
  • [46] Uncovering STEMI patient phenotypes using unsupervised machine learning
    Chunta, Alec
    Miller, Robert J. H.
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2024, 413
  • [47] Classification of Microelectronics Radiation Effects Using Unsupervised Machine Learning
    Peyton, Trevor
    Carpenter, Jake
    Reising, Donald
    Loveless, Daniel
    2024 IEEE AEROSPACE CONFERENCE, 2024,
  • [48] Surface roughness discrimination using unsupervised machine learning algorithms
    Qin, Longhui
    Zhang, Yilei
    2017 16TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2017, : 854 - 857
  • [49] Exploration of critical care data by using unsupervised machine learning
    Hyun, Sookyung
    Kaewprag, Pacharmon
    Cooper, Cheryl
    Hixon, Brenda
    Moffatt-Bruce, Susan
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2020, 194
  • [50] Characterizing vaping posts on Instagram by using unsupervised machine learning
    Ketonen, Vili
    Malik, Aqdas
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2020, 141