Controlling Neural Style Transfer with Deep Reinforcement Learning

被引:0
|
作者
Feng, Chengming [1 ]
Hu, Jing [1 ]
Wang, Xin [2 ]
Hu, Shu [3 ]
Zhu, Bin [4 ]
Wu, Xi [1 ]
Zhu, Hongtu [5 ]
Lyu, Siwei [2 ]
机构
[1] Chengdu Univ Informat Technol, Chengdu, Peoples R China
[2] SUNY Buffalo, Buffalo, NY 14260 USA
[3] Carnegie Mellon Univ, Pittsburgh, PA USA
[4] Microsoft Res Asia, Beijing, Peoples R China
[5] Univ North Carolina Chapel Hill, Chapel Hill, NC USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Controlling the degree of stylization in the Neural Style Transfer (NST) is a little tricky since it usually needs hand-engineering on hyper-parameters. In this paper, we propose the first deep Reinforcement Learning (RL) based architecture that splits one-step style transfer into a step-wise process for the NST task. Our RL-based method tends to preserve more details and structures of the content image in early steps, and synthesize more style patterns in later steps. It is a user-easily-controlled style-transfer method. Additionally, as our RL-based model performs the stylization progressively, it is lightweight and has lower computational complexity than existing one-step Deep Learning (DL) based models. Experimental results demonstrate the effectiveness and robustness of our method.
引用
收藏
页码:100 / 108
页数:9
相关论文
共 50 条
  • [21] Neural Malware Control with Deep Reinforcement Learning
    Wang, Yu
    Stokes, Jack W.
    Marinescu, Mady
    MILCOM 2019 - 2019 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM), 2019,
  • [22] Deep Reinforcement Learning with the Random Neural Network
    Serrano, Will
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 110
  • [23] Deep Reinforcement Learning for Subpixel Neural Tracking
    Dai, Tianhong
    Dubois, Magda
    Arulkumaran, Kai
    Campbell, Jonathan
    Bass, Cher
    Billot, Benjamin
    Uslu, Fatmatulzehra
    de Paola, Vincenzo
    Clopath, Claudia
    Bharath, Anil Anthony
    INTERNATIONAL CONFERENCE ON MEDICAL IMAGING WITH DEEP LEARNING, VOL 102, 2019, 102 : 130 - 150
  • [24] On the Expressivity of Neural Networks for Deep Reinforcement Learning
    Dong, Kefan
    Luo, Yuping
    Yu, Tianhe
    Finn, Chelsea
    Ma, Tengyu
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [25] DEEP REINFORCEMENT LEARNING FOR TRANSFER OF CONTROL POLICIES
    Cunningham, James D.
    Miller, Simon W.
    Yukish, Michael A.
    Simpson, Timothy W.
    Tucker, Conrad S.
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2019, VOL 2A, 2020,
  • [26] Grounding Language for Transfer in Deep Reinforcement Learning
    Narasimhan, Karthik
    Barzilay, Regina
    Jaakkola, Tommi
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2018, 63 : 849 - 874
  • [27] Independent Skill Transfer for Deep Reinforcement Learning
    Tian, Qiangxing
    Wang, Guanchu
    Liu, Jinxin
    Wang, Donglin
    Kang, Yachen
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 2901 - 2907
  • [28] Towards Knowledge Transfer in Deep Reinforcement Learning
    Glatt, Ruben
    da Silva, Felipe Leno
    Reali Costa, Anna Helena
    PROCEEDINGS OF 2016 5TH BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS 2016), 2016, : 91 - 96
  • [29] Improving Deep Reinforcement Learning with Knowledge Transfer
    Glatt, Ruben
    Reali Costa, Anna Helena
    THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 5036 - 5037
  • [30] Neural style transfer based on deep feature synthesis
    Li, Dajin
    Gao, Wenran
    VISUAL COMPUTER, 2023, 39 (11): : 5359 - 5373