Controlling Neural Style Transfer with Deep Reinforcement Learning

被引:0
|
作者
Feng, Chengming [1 ]
Hu, Jing [1 ]
Wang, Xin [2 ]
Hu, Shu [3 ]
Zhu, Bin [4 ]
Wu, Xi [1 ]
Zhu, Hongtu [5 ]
Lyu, Siwei [2 ]
机构
[1] Chengdu Univ Informat Technol, Chengdu, Peoples R China
[2] SUNY Buffalo, Buffalo, NY 14260 USA
[3] Carnegie Mellon Univ, Pittsburgh, PA USA
[4] Microsoft Res Asia, Beijing, Peoples R China
[5] Univ North Carolina Chapel Hill, Chapel Hill, NC USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Controlling the degree of stylization in the Neural Style Transfer (NST) is a little tricky since it usually needs hand-engineering on hyper-parameters. In this paper, we propose the first deep Reinforcement Learning (RL) based architecture that splits one-step style transfer into a step-wise process for the NST task. Our RL-based method tends to preserve more details and structures of the content image in early steps, and synthesize more style patterns in later steps. It is a user-easily-controlled style-transfer method. Additionally, as our RL-based model performs the stylization progressively, it is lightweight and has lower computational complexity than existing one-step Deep Learning (DL) based models. Experimental results demonstrate the effectiveness and robustness of our method.
引用
收藏
页码:100 / 108
页数:9
相关论文
共 50 条
  • [1] Comparison of Neural Style Transfer Performance of Deep Learning Models
    Karadag, Batuhan
    Ari, Ali
    Karadag, Muge
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2021, 24 (04): : 1611 - 1622
  • [2] Controlling Perceptual Factors in Neural Style Transfer
    Gatys, Leon A.
    Ecker, Alexander S.
    Bethge, Matthias
    Hertzmann, Aaron
    Shechtman, Eli
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 3730 - 3738
  • [3] Transfer Learning in Deep Reinforcement Learning
    Islam, Tariqul
    Abid, Dm. Mehedi Hasan
    Rahman, Tanvir
    Zaman, Zahura
    Mia, Kausar
    Hossain, Ramim
    PROCEEDINGS OF SEVENTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, ICICT 2022, VOL 1, 2023, 447 : 145 - 153
  • [4] A Transfer Approach Using Graph Neural Networks in Deep Reinforcement Learning
    Yang, Tianpei
    You, Heng
    Hao, Jianye
    Zheng, Yan
    Taylor, Matthew E.
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 15, 2024, : 16352 - 16360
  • [5] A Survey on Attacks and Their Countermeasures in Deep Learning: Applications in Deep Neural Networks, Federated, Transfer, and Deep Reinforcement Learning
    Ali, Haider
    Chen, Dian
    Harrington, Matthew
    Salazar, Nathaniel
    Al Ameedi, Mohannad
    Khan, Ahmad Faraz
    Butt, Ali R.
    Cho, Jin-Hee
    IEEE ACCESS, 2023, 11 : 120095 - 120130
  • [6] Bootstrap State Representation Using Style Transfer for Better Generalization in Deep Reinforcement Learning
    Rahman, Md Masudur
    Xue, Yexiang
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT IV, 2023, 13716 : 100 - 115
  • [7] Deep Reinforcement Learning for Controlling the Groundwater in Slopes
    Biniyaz, Aynaz
    Azmoon, Behnam
    Liu, Zhen
    GEO-CONGRESS 2022: SITE AND SOIL CHARACTERIZATION, COMPUTATIONAL GEOTECHNICS, RISK, AND LESSONS LEARNED, 2022, 333 : 648 - 657
  • [8] Controlling an Autonomous Vehicle with Deep Reinforcement Learning
    Folkers, Andreas
    Rick, Matthias
    Bueskens, Christof
    2019 30TH IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV19), 2019, : 2025 - 2031
  • [9] CAPTCHA Image Generation Using Style Transfer Learning in Deep Neural Network
    Kwon, Hyun
    Yoon, Hyunsoo
    Park, Ki-Woong
    INFORMATION SECURITY APPLICATIONS, WISA 2019, 2020, 11897 : 234 - 246
  • [10] Transfer Learning in Deep Reinforcement Learning: A Survey
    Zhu, Zhuangdi
    Lin, Kaixiang
    Jain, Anil K.
    Zhou, Jiayu
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (11) : 13344 - 13362