Community Detection for Heterogeneous Multiple Social Networks

被引:0
|
作者
Zhu, Ziqing [1 ]
Yuan, Guan [1 ,2 ,3 ]
Zhou, Tao [4 ]
Cao, Jiuxin [5 ,6 ]
机构
[1] China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China
[2] China Univ Min & Technol, Jiangsu Key Lab Mine Mech & Elect Equipment, Xuzhou 221116, Jiangsu, Peoples R China
[3] Minist Educ, Engn Res Ctr, Digitizat Mine, Xuzhou 221116, Jiangsu, Peoples R China
[4] Nanjing Tech Univ, Coll Comp & Informat Engn, Nanjing 211816, Peoples R China
[5] Southeast Univ, Sch Cyber Sci & Engn, Nanjing 211189, Peoples R China
[6] Purple Mt Labs, Nanjing 211111, Peoples R China
来源
关键词
Social networking (online); Multiplexing; Topology; Blogs; Nonhomogeneous media; Detection algorithms; Symmetric matrices; Clustering; community detection; data mining; matrix factorization; social network;
D O I
10.1109/TCSS.2024.3399784
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The community plays a crucial role in understanding user behavior and network characteristics in social networks. Some users can use multiple social networks at once for a variety of objectives. These users are called overlapping users who bridge different social networks. Detecting communities across multiple social networks is vital for interaction mining, information diffusion, and behavior migration analysis among networks. This article presents a community detection method based on nonnegative matrix trifactorization for multiple heterogeneous social networks, which formulates a common consensus matrix to represent the global fused community. Specifically, the proposed method involves creating adjacency matrices based on network structure and content similarity, followed by alignment matrices that distinguish overlapping users in different social networks. With the generated alignment matrices, the method could enhance the fusion degree of the global community by detecting overlapping user communities across networks. The effectiveness of the proposed method is evaluated with new metrics on Twitter, Instagram, and Tumblr datasets. The results of the experiments demonstrate its superior performance in terms of community quality and community fusion.
引用
收藏
页码:6966 / 6981
页数:16
相关论文
共 50 条
  • [41] Accelerating Link Community Detection in Social Networks
    Teng, Fei
    Dai, Rongjie
    Wang, Hongjie
    Fan, Xiaoliang
    2015 INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA (CCBD), 2015, : 119 - 126
  • [42] A Dynamic Algorithm for Community Detection in Social Networks
    Kong, Bing
    Chen, Hongmei
    Liu, Weiyi
    Zhou, Lihua
    PROCEEDINGS OF THE 10TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2012), 2012, : 350 - 354
  • [43] User Interface for Community Detection in Social Networks
    Jadar, Galaxy
    Umadevi, V
    2014 3RD INTERNATIONAL CONFERENCE ON ECO-FRIENDLY COMPUTING AND COMMUNICATION SYSTEMS (ICECCS 2014), 2014, : 35 - 38
  • [44] Community Detection in Partially Observable Social Networks
    Tran, Cong
    Shin, Won-Yong
    Spitz, Andreas
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2022, 16 (02)
  • [45] Fuzzy Community Detection Model in Social Networks
    Golsefid, Samira Malek Mohamadi
    Zarandi, Mohammad Hossien Fazel
    Bastani, Susan
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2015, 30 (12) : 1227 - 1244
  • [46] Genetic Algorithms for Community Detection in Social Networks
    Hafez, Ahmed Ibrahem
    Ghali, Neveen I.
    Hassanien, Aboul Ella
    Fahmy, Aly A.
    2012 12TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS (ISDA), 2012, : 460 - 465
  • [47] Community Detection Techniques for Evolving Social Networks
    Rajita, B. S. A. S.
    Panda, Subhrakanta
    2019 9TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING (CONFLUENCE 2019), 2019, : 681 - 686
  • [48] Community Detection in Social Networks: Literature Review
    Rani, Seema
    Mehrotra, Monica
    JOURNAL OF INFORMATION & KNOWLEDGE MANAGEMENT, 2019, 18 (02)
  • [49] Community Detection on Social Networks With Sentimental Interaction
    Feng, Bingdao
    Cheng, Fangyu
    Liu, Yanfei
    Chang, Xinglong
    Wang, Xiaobao
    Jin, Di
    INTERNATIONAL JOURNAL ON SEMANTIC WEB AND INFORMATION SYSTEMS, 2024, 20 (01)
  • [50] Community Detection in Social Networks by Cultural Algorithm
    Zadeh, Pooya Moradim
    Kobti, Ziad
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON COLLABORATION TECHNOLOGIES AND SYSTEMS, 2015, : 319 - 325