Environmental Insights: Democratizing access to ambient air pollution data and predictive analytics with an open-source Python']Python package

被引:0
|
作者
Berrisford, Liam J. [1 ,2 ,3 ]
Menezes, Ronaldo [1 ,4 ]
机构
[1] Univ Exeter, Dept Comp Sci, BioComplex Lab, Exeter, England
[2] Univ Exeter, Dept Math, Exeter, England
[3] Univ Exeter, UKRI Ctr Doctoral Training Environm Intelligence, Exeter, England
[4] Univ Fed Ceara, Dept Comp Sci, Fortaleza, Brazil
基金
英国工程与自然科学研究理事会;
关键词
Ambient air pollution; Forecasting; Interventions; Stakeholder engagement; EXPOSURE; ADULTS; HEALTH; IMPACT; MODEL;
D O I
10.1016/j.envsoft.2024.106131
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Ambient air pollution is a pervasive issue with wide-ranging effects on human health, ecosystem vitality, and economic structures. Utilizing data on ambient air pollution concentrations, researchers can perform comprehensive analyses to uncover the multifaceted impacts of air pollution across society. To this end, we introduce Environmental tal Insights, , an open-source Python package designed to democratize access to air pollution concentration data. This tool enables users to easily retrieve historical air pollution data and employ a Machine Learning model for forecasting potential future conditions. Moreover, Environmental Insights includes a suite of tools aimed at facilitating the dissemination of analytical findings and enhancing user engagement through dynamic visualizations. This comprehensive approach ensures that the package caters to the diverse needs of individuals looking to explore and understand air pollution trends and their implications. Code repository clickable link: Environmental Insights Github Home Page.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Curvit: An open-source Python package to generate light curves from UVIT data
    P. Joseph
    C. S. Stalin
    S. N. Tandon
    S. K. Ghosh
    Journal of Astrophysics and Astronomy, 2021, 42
  • [32] Open-source Python repository for data drift analysis
    Wrobel, Krzysztof
    Porwik, Piotr
    Orczyk, Tomasz
    Procedia Computer Science, 2024, 246 (0C) : 482 - 489
  • [33] agnpy: An open-source python']python package modelling the radiative processes of jetted active galactic nuclei
    Nigro, C.
    Sitarek, J.
    Gliwny, P.
    Sanchez, D.
    Tramacere, A.
    Craig, M.
    ASTRONOMY & ASTROPHYSICS, 2022, 660
  • [34] xlogit: An open-source Python']Python package for GPU-accelerated estimation of Mixed Logit models
    Arteaga, Cristian
    Park, JeeWoong
    Beeramoole, Prithvi Bhat
    Paz, Alexander
    JOURNAL OF CHOICE MODELLING, 2022, 42
  • [35] Flaremodel: An open-source Python']Python package for one-zone numerical modelling of synchrotron sources
    Dallilar, Y.
    von Fellenberg, S.
    Bauboeck, M.
    de Zeeuw, P. T.
    Drescher, A.
    Eisenhauer, F.
    Genzel, R.
    Gillessen, S.
    Habibi, M.
    Ott, T.
    Ponti, G.
    Stadler, J.
    Straub, O.
    Widmann, F.
    Witzel, G.
    Young, A.
    ASTRONOMY & ASTROPHYSICS, 2022, 658
  • [36] StormReactor: An open-source Python']Python package for the integrated modeling of urban water quality and water balance
    Mason, Brooke E.
    Mullapudi, Abhiram
    Kerkez, Branko
    ENVIRONMENTAL MODELLING & SOFTWARE, 2021, 145
  • [37] mfapy: An open-source Python']Python package for 13C-based metabolic flux analysis
    Matsuda, Fumio
    Maeda, Kousuke
    Taniguchi, Takeo
    Kondo, Yuya
    Yatabe, Futa
    Okahashi, Nobuyuki
    Shimizu, Hiroshi
    METABOLIC ENGINEERING COMMUNICATIONS, 2021, 13
  • [38] QmeQ 1.0: An open-source Python']Python package for calculations of transport through quantum dot devices
    Kirsanskas, Gediminas
    Pedersen, Jonas Nyvold
    Karlstrom, Olov
    Leijnse, Martin
    Wacker, Andreas
    COMPUTER PHYSICS COMMUNICATIONS, 2017, 221 : 317 - 342
  • [39] Mass-Suite: a novel open-source python']python package for high-resolution mass spectrometry data analysis
    Hu, Ximin
    Mar, Derek
    Suzuki, Nozomi
    Zhang, Bowei
    Peter, Katherine T.
    Beck, David A. C.
    Kolodziej, Edward P.
    JOURNAL OF CHEMINFORMATICS, 2023, 15 (01)
  • [40] Sleep: An Open-Source Python']Python Software for Visualization, Analysis, and Staging of Sleep Data
    Combrisson, Etienne
    Vallat, Raphael
    Eichenlaub, Jean-Baptiste
    O'Reilly, Christian
    Lajnef, Tarek
    Guillot, Aymeric
    Ruby, Perrine M.
    Jerbi, Karim
    FRONTIERS IN NEUROINFORMATICS, 2017, 11