Resource-efficient, sensor-based human activity recognition with lightweight deep models boosted with attention

被引:1
|
作者
Agac, Sumeyye [1 ]
Incel, Ozlem Durmaz [1 ]
机构
[1] Bogazici Univ, Dept Comp Engn, TR-34684 Istanbul, Turkiye
关键词
Attention mechanism; Convolutional neural networks; Human activity recognition; Hybrid deep models; Motion sensors; Resource consumption; OF-THE-ART; FUSION; NETWORKS;
D O I
10.1016/j.compeleceng.2024.109274
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
With their automatic feature extraction capabilities, deep learning models have become more widespread in sensor-based human activity recognition, particularly on larger datasets. However, their direct use on mobile and wearable devices is challenging due to the extensive resource requirements. Concurrently, attention-based models are emerging to improve recognition performance by dynamically emphasizing relevant parts of features and disregarding the irrelevant ones, particularly in the computer vision domain. This study introduces a novel application of attention mechanisms to smaller deep architectures, investigating whether smaller models can achieve comparable recognition performance to larger models in sensor-based human activity recognition systems while keeping resource usage at lower levels. For this purpose, we integrate the convolutional block attention module into a hybrid model, deep convolutional and long short-term memory network. Experiments are conducted using five public datasets in three model sizes: lightweight, moderate and original. The results show that applying attention to the lightweight model enables achieving similar recognition performances to the moderate-size model, and the lightweight model requires approximately 2-13 times fewer parameters and 3.5 times fewer flops. We also conduct experiments with sensor data at lower sampling rates and from fewer sensors attached to different body parts. The results show that attention improves recognition performance under lower sampling rates, as well as under higher sampling rates when model sizes are smaller, and mitigates the impact of missing data from one or more body parts, making the model more suitable for real-world sensor-based applications.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Resource-Efficient Continual Learning for Sensor-Based Human Activity Recognition
    Leite, Clayton Frederick Souza
    Xiao, Yu
    ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS, 2022, 21 (06)
  • [2] MultiCNN-FilterLSTM: Resource-efficient sensor-based human activity recognition in IoT applications
    Park, Hyunseo
    Kim, Nakyoung
    Lee, Gyeong Ho
    Choi, Jun Kyun
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2023, 139 : 196 - 209
  • [3] Deep Triplet Networks with Attention for Sensor-based Human Activity Recognition
    Khaertdinov, Bulat
    Ghaleb, Esam
    Asteriadis, Stylianos
    2021 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS (PERCOM), 2021,
  • [4] Optimal sensor channel selection for resource-efficient deep activity recognition
    Souza Leite, Clayton Frederick
    Xiao, Yu
    IPSN'21: PROCEEDINGS OF THE 20TH ACM/IEEE CONFERENCE ON INFORMATION PROCESSING IN SENSOR NETWORKS, 2021, : 371 - 383
  • [5] Enhancing Sensor-Based Human Activity Recognition using Efficient Channel Attention
    Jitpattanakul, Anuchit
    Mekruksavanich, Sakorn
    2023 IEEE SENSORS, 2023,
  • [6] Transforming Deep Learning Models for Resource-Efficient Activity Recognition on Mobile Devices
    Bursa, Sevda Ozge
    Incel, Ozlem Durmaz
    Alptekin, Gulfem Isiklar
    2022 5TH CONFERENCE ON CLOUD AND INTERNET OF THINGS, CIOT, 2022, : 83 - 89
  • [7] Eff-WHAR: A Lightweight Design for Efficient Wearable Sensor-Based Human Activity Recognition
    Chen, Zijie
    Zou, Hailin
    Wang, Lei
    Wang, Binbin
    Zhang, Fuchun
    Ma, Songjie
    Pan, Yuanyuan
    Li, Jianqing
    IEEE SENSORS JOURNAL, 2025, 25 (02) : 3935 - 3948
  • [8] Deep learning and model personalization in sensor-based human activity recognition
    Ferrari A.
    Micucci D.
    Mobilio M.
    Napoletano P.
    Journal of Reliable Intelligent Environments, 2023, 9 (01) : 27 - 39
  • [9] A Hybrid Deep Neural Networks for Sensor-based Human Activity Recognition
    Wang, Shujuan
    Zhu, Xiaoke
    2020 12TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2020, : 486 - 491
  • [10] Deep learning for sensor-based activity recognition: A survey
    Wang, Jindong
    Chen, Yiqiang
    Hao, Shuji
    Peng, Xiaohui
    Hu, Lisha
    PATTERN RECOGNITION LETTERS, 2019, 119 : 3 - 11