A Hybrid Deep Neural Networks for Sensor-based Human Activity Recognition

被引:0
|
作者
Wang, Shujuan [1 ]
Zhu, Xiaoke [1 ]
机构
[1] Yunnan Univ, Natl Pilot Sch Software, Kunming, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
human activity recognition; deep neural networks; sensors data; smart phone; classifier;
D O I
10.1109/icaci49185.2020.9177818
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Human activity recognition is playing a significant role to health-care. Existing methods to classify human activity are mainly based on machine learning algorithm combined with features selection method and deep neural network models. Due to the complexity and diversity of sensors signal data of human activities, there exists challenge to design a suitable model. In this paper, we designed a hybrid deep neural network model, which makes use of several kinds of deep neural networks to learning features of sensors data for human activities. However, the periodicity and transferability of human action require model is able to know spatial-temporal information and the vanishing gradient problem need the rationality for a design of model. In view of the above-mentioned factors, proposed model is designed by convolutional layers, bidirectional LSTM layers and attention modules. Experimental results on UCI-HAR dataset show, proposed model achieved an accuracy of up to 95.58%, which is the best performance among the classic classification methods.
引用
收藏
页码:486 / 491
页数:6
相关论文
共 50 条
  • [1] Inertial Sensor-based Human Activity Recognition Using Hybrid Deep Neural Networks
    Lei, Zhanzhi
    Xie, Jinfeng
    Xiao, Liang
    2021 14TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2021), 2021,
  • [2] Deep Neural Networks for Sensor-Based Human Activity Recognition Using Selective Kernel Convolution
    Gao, Wenbin
    Zhang, Lei
    Huang, Wenbo
    Min, Fuhong
    He, Jun
    Song, Aiguo
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [3] Deep Triplet Networks with Attention for Sensor-based Human Activity Recognition
    Khaertdinov, Bulat
    Ghaleb, Esam
    Asteriadis, Stylianos
    2021 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS (PERCOM), 2021,
  • [4] Hybrid deep learning approaches for smartphone sensor-based human activity recognition
    Vasundhara Ghate
    Sweetlin Hemalatha C
    Multimedia Tools and Applications, 2021, 80 : 35585 - 35604
  • [5] Wearable Sensor-Based Human Activity Recognition with Hybrid Deep Learning Model
    Luwe, Yee Jia
    Lee, Chin Poo
    Lim, Kian Ming
    INFORMATICS-BASEL, 2022, 9 (03):
  • [6] Hybrid deep learning approaches for smartphone sensor-based human activity recognition
    Ghate, Vasundhara
    Hemalatha, Sweetlin C.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (28-29) : 35585 - 35604
  • [7] Robust Sensor-based Human Activity Recognition with Snippet Consensus Neural Networks
    Huang, Yu
    Lee, Meng-Chieh
    Tseng, Vincent S.
    Hsiao, Ching-Jui
    Huang, Chi-Chiang
    2019 IEEE 16TH INTERNATIONAL CONFERENCE ON WEARABLE AND IMPLANTABLE BODY SENSOR NETWORKS (BSN), 2019,
  • [8] Wearable Sensor-Based Human Activity Recognition Using Hybrid Deep Learning Techniques
    Wang, Huaijun
    Zhao, Jing
    Li, Junhuai
    Tian, Ling
    Tu, Pengjia
    Cao, Ting
    An, Yang
    Wang, Kan
    Li, Shancang
    SECURITY AND COMMUNICATION NETWORKS, 2020, 2020
  • [9] HiHAR: A Hierarchical Hybrid Deep Learning Architecture for Wearable Sensor-Based Human Activity Recognition
    Nguyen Thi Hoai Thu
    Han, Dong Seog
    IEEE ACCESS, 2021, 9 : 145271 - 145281
  • [10] Hybrid convolution neural network with channel attention mechanism for sensor-based human activity recognition
    Mekruksavanich, Sakorn
    Jitpattanakul, Anuchit
    SCIENTIFIC REPORTS, 2023, 13 (01)