AN IMPROVED REVERSE MONTE CARLO METHOD FOR THE INVESTIGATION OF AERODYNAMIC AND INFRARED RADIATION CHARACTERISTICS OF A FLYING WING UAV

被引:0
|
作者
Gao, Xiang [1 ]
Yang, Qingzhen [1 ]
Yang, Huicheng [1 ]
Bai, Jin [1 ]
He, Yubo [1 ]
机构
[1] Northwestern Polytech Univ, Sch Power & Energy, Xian, Peoples R China
关键词
Improved ray tracing method; reverse MoteCarlo method; double S-shaped nozzle; wing body; infrared radiation; SIGNATURE; CO2;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Using the improved ray tracing method to improve the reverse Monte Carlo (RMC) method, which is used to analyze the infrared radiation (IR) characteristics of the exhaust system, can greatly improve the computational efficiency and accuracy, and the calculation accuracy is improved by more than 8% compared with the RMC using ray tracing algorithm. For a flying wing unmanned aerial vehicle (UAV), the influence of the geometry of the double S-shaped nozzles and the single S-shaped nozzles on the internal flow field were analyzed, then the influence of the internal and external flow on the aerodynamic performance of the S-shaped exhaust system, and the IR characteristics of the aircraft with different inlet and exhaust system in the 3 mu m-5 mu m and 8 mu m-14 mu m bands were studied. The aerodynamic performance of the S-shaped nozzles are studied by numerical simulations. The IR characteristics of the rear hemisphere on the single S-shaped nozzles and the double S-shaped nozzles were obtained, those nozzles have the similar engine matching performance. The double S-shaped nozzle, resulting in a decrease of the radiation intensity of the nozzle by at least 65%, compared to the single S-shaped nozzle in the 3 mu m-5 mu m band. The aerodynamic characteristics of the flying wing UAV with the two S-shaped exhaust systems are also compared, and the changes in lift and resistance are analyzed. The forward IR intensity of the flying wing UAV is significantly lower than that of the backward direction, and the upper direction IR intensity is higher than that of the lateral direction and the downward direction. Compared to the flying wing UAV with the single S-shaped exhaust system, the flying wing of the double S-shaped exhaust system has a lower IR intensity, for the peak intensity of the rear hemisphere in the 3 mu m5 mu m band is reduced at least 80%, the maximum value of the locked distance is reduced to 25% of the UAV using the single S curved exhaust system. The ratio of the amount of aircraft skin radiation to the total radiation increases from 30% in the 3 mu m-5 mu m band to more than 70% in the 8 mu m-14 mu m band. From the results of spectral analysis of UAV from 13 mu m-14 mu m, the spectral radiance of the carbon dioxide absorption and emission band in the detector image is significantly less than that of the UAV with a single S-shaped nozzle.
引用
收藏
页数:11
相关论文
共 37 条
  • [21] Simulation of the infrared radiation characteristics of high-temperature exhaust plume including, particles using the backward Monte Carlo method
    Shuai, Y
    Dong, SK
    Tan, HP
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2005, 95 (02): : 231 - 240
  • [22] Method for increasing ground movement characteristics of an unmanned aerial vehicle of an aerodynamic scheme of a flying wing and its virtual testing
    Smagin, Andrey A.
    Dolgov, Oleg S.
    Safoklov, Boris B.
    INTERNATIONAL JOURNAL OF SUSTAINABLE AVIATION, 2021, 7 (02) : 154 - 164
  • [23] Investigation of radiation damage in structural material of APEX reactor by using Monte Carlo method
    Gunay, Mehtap
    ANNALS OF NUCLEAR ENERGY, 2013, 53 : 59 - 63
  • [24] CHARACTERISTICS OF RECORDING BRAKING RADIATION BY A COLLIMATED DETECTOR AND THEIR CALCULATION BY MONTE-CARLO METHOD
    POKROVSK.AV
    TARASOV, GP
    ATOMNAYA ENERGIYA, 1973, 35 (03): : 191 - 191
  • [25] Cant angle morphing winglets investigation for the enhancement of the aerodynamic, stability and performance characteristics of a tactical Blended-Wing-Body UAV
    Panagiotou, P.
    Antoniou, S.
    Yakinthos, K.
    AEROSPACE SCIENCE AND TECHNOLOGY, 2022, 123
  • [26] AN IMPROVED ZONE METHOD USING MONTE-CARLO TECHNIQUES FOR THE SIMULATION OF RADIATION IN INDUSTRIAL FURNACES
    VERCAMMEN, HAJ
    FROMENT, GF
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1980, 23 (03) : 329 - 337
  • [27] Backward Monte Carlo method for simulating spectral radiation characteristics of boost-gliding vehicle
    Chen, Yatao
    Zheng, Hongru
    Ren, Xiang
    He, Bijiao
    Dong, Chao
    Cai, Guobiao
    Liu, Lihui
    AEROSPACE SCIENCE AND TECHNOLOGY, 2023, 132
  • [28] Calculation of Radiation Characteristics of Shock-Heated Air by the Direct Simulation Monte Carlo Method
    Kusov, A. L.
    Bykova, N. G.
    Gerasimov, G. Ya.
    Kozlov, P. V.
    Zabelinsky, I. E.
    Levashov, V. Yu.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B, 2024, 18 (04) : 945 - 951
  • [29] Simulation of infrared radiation characteristics of high temperature free-stream flow including particles by using backward Monte-Carlo method
    Shuai, Yong
    Dong, Shi-Kui
    Liu, Lin-Hua
    Hongwai Yu Haomibo Xuebao/Journal of Infrared and Millimeter Waves, 2005, 24 (02): : 100 - 104
  • [30] Simulation of infrared radiation characteristics of high temperature free-stream flow including particles by using backward Monte-Carlo method
    Shuai, Y
    Dong, SK
    Lin, LH
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2005, 24 (02) : 100 - 104