Prediction of histopathologic grades of bladder cancer with radiomics based on MRI: Comparison with traditional MRI

被引:0
|
作者
Li, Longchao [1 ]
Zhang, Jing [1 ]
Zhe, Xia [1 ]
Tang, Min [1 ]
Zhang, Li [1 ]
Lei, Xiaoyan [1 ]
Zhang, Xiaoling [1 ]
机构
[1] Shaanxi Prov Peoples Hosp, Dept MRI, Xian, Shaanxi, Peoples R China
关键词
Bladder cancer; Histopathological grading; Radiomics; Nomogram; MRI; UROTHELIAL CARCINOMA; IMPACT; MUSCLE; STAGE; RISK;
D O I
10.1016/j.urolonc.2024.02.008
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: To compare biparametric magnetic resonance imaging (bp-MRI) radiomics signatures and traditional MRI model for the preMaterials and methods: This retrospective study included 255 consecutive patients with pathologically confirmed 113 low-grade and 142 high-grade BCa. The traditional MRI nomogram model was developed using univariate and multivariate logistic regression by the mean apparent diffusion coefficient (ADC), vesical imaging reporting and data system, tumor size, and the number of tumors. Volumes of interest were manually drawn on T2-weighted imaging (T2WI) and ADC maps by 2 radiologists. Using one-way analysis of variance, correlation, and least absolute shrinkage and selection operator methods to select features. Then, a logistic regression classifier was used to develop the radiomics signatures. Receiver operating characteristic (ROC) analysis was used to compare the diagnostic abilities of the radiomics and traditional MRI models by the DeLong test. Finally, decision curve analysis was performed by estimating the clinical usefulness of the 2 models. Results: The area under the ROC curves (AUCs) of the traditional MRI model were 0.841 in the training cohort and 0.806 in the validation cohort. The AUCs of the 3 groups of radiomics model [ADC, T2WI, bp-MRI (ADC and T2WI)] were 0.888, 0.875, and 0.899 in the training cohort and 0.863, 0.805, and 0.867 in the validation cohort, respectively. The combined radiomics model achieved higher AUCs than the traditional MRI model. decision curve analysis indicated that the radiomics model had higher net benefits than the traditional MRI model. Conclusion: The bp-MRI radiomics model may help distinguish high-grade and low-grade BCa and outperforming the traditional MRI model. Multicenter validation is needed to acquire high-level evidence for its clinical application. (c) 2024 Published by Elsevier Inc.
引用
收藏
页码:176e9 / 176e20
页数:12
相关论文
共 50 条
  • [21] Prediction of clinically significant prostate cancer with a multimodal MRI-based radiomics nomogram
    Jing, Guodong
    Xing, Pengyi
    Li, Zhihui
    Ma, Xiaolu
    Lu, Haidi
    Shao, Chengwei
    Lu, Yong
    Lu, Jianping
    Shen, Fu
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [22] Prediction of radiation proctitis in cervical cancer radiotherapy using MRI-based radiomics
    Lin, Jie
    Liu, Linying
    Yu, Haijuan
    Xie, Ning
    Sun, Yang
    GYNECOLOGIC ONCOLOGY, 2024, 190 : S47 - S48
  • [23] Pretreatment MRI Radiomics Based Response Prediction Model in Locally Advanced Cervical Cancer
    Gui, Benedetta
    Autorino, Rosa
    Micco, Maura
    Nardangeli, Alessia
    Pesce, Adele
    Lenkowicz, Jacopo
    Cusumano, Davide
    Russo, Luca
    Persiani, Salvatore
    Boldrini, Luca
    Dinapoli, Nicola
    Macchia, Gabriella
    Sallustio, Giuseppina
    Gambacorta, Maria Antonietta
    Ferrandina, Gabriella
    Manfredi, Riccardo
    Valentini, Vincenzo
    Scambia, Giovanni
    DIAGNOSTICS, 2021, 11 (04)
  • [24] Comparison of preoperative CT- and MRI-based multiparametric radiomics in the prediction of lymph node metastasis in rectal cancer
    Niu, Yue
    Yu, Xiaoping
    Wen, Lu
    Bi, Feng
    Jian, Lian
    Liu, Siye
    Yang, Yanhui
    Zhang, Yi
    Lu, Qiang
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [25] Advances in MRI-Based Radiomics for Prostate Cancer
    Chaddad, Ahmad
    Katib, Yousef
    Tanougast, Camel
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [26] Editorial for "Preoperative Prediction of MRI-Invisible Early-Stage Endometrial Cancer With MRI-Based Radiomics Analysis"
    Ohliger, Michael A.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2023, 58 (01) : 256 - 257
  • [27] Radiomics for MRI Prediction of Tumor Response after Chemoradiotherapy in Rectal Cancer
    Taylor, Stuart A.
    RADIOLOGY, 2022, 303 (02)
  • [28] Rectal Cancer Prognosis Prediction Using Radiomics From Pretreatment MRI
    Zhong, X.
    Li, N.
    Sung, K.
    Qi, X.
    MEDICAL PHYSICS, 2018, 45 (06) : E158 - E158
  • [29] An MRI radiomics-based model for the prediction of invasion of the lymphovascular space in patients with cervical cancer
    Ma, Nan-Nan
    Wang, Tao
    Lv, Ya-Nan
    Li, Shao-Dong
    FRONTIERS IN ONCOLOGY, 2024, 14
  • [30] MRI Radiomics of Breast Cancer: Machine Learning-Based Prediction of Lymphovascular Invasion Status
    Kayadibi, Yasemin
    Kocak, Burak
    Ucar, Nese
    Akan, Yesim Namdar
    Yildirim, Emine
    Bektas, Sibel
    ACADEMIC RADIOLOGY, 2022, 29 : S126 - S134