A note on stable complex structures on real vector bundles over manifolds

被引:3
|
作者
Yang, Huijun [1 ]
机构
[1] Henan Univ, Sch Math & Stat, Kaifeng 475004, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Stable complex structure; Real reduction; Atiyah-Hirzebruch spectral sequence; Differentiable Riemann-Roch theorem;
D O I
10.1016/j.topol.2015.03.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M be an n-dimensional closed oriented smooth manifold with n equivalent to 0 mod 8, xi be a real vector bundle over M. Suppose that xi admits a stable complex structure over the (n 1)-skeleton of M. Then the necessary and sufficient conditions for xi to admit a stable complex structure over M are given in terms of the characteristic classes of xi and M. As an application, we obtain the criteria to determine which real vector bundle over 8-dimensional manifold admits a stable complex structure. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [31] Topological classification of complex vector bundles over 8-dimensional spinc manifolds
    Yang, Huijun
    MANUSCRIPTA MATHEMATICA, 2023, 172 (1-2) : 57 - 74
  • [32] Characteristic rank of vector bundles over Stiefel manifolds
    Július Korbaš
    Aniruddha C. Naolekar
    Ajay Singh Thakur
    Archiv der Mathematik, 2012, 99 : 577 - 581
  • [33] Vector bundles over non-Hausdorff manifolds
    O'Connell, David
    TOPOLOGY AND ITS APPLICATIONS, 2024, 354
  • [34] Characteristic rank of vector bundles over Stiefel manifolds
    Korbas, Julius
    Naolekar, Aniruddha C.
    Thakur, Ajay Singh
    ARCHIV DER MATHEMATIK, 2012, 99 (06) : 577 - 581
  • [35] A construction of stable vector bundles on Calabi-Yau manifolds
    Nakashima, T
    JOURNAL OF GEOMETRY AND PHYSICS, 2004, 49 (02) : 224 - 230
  • [36] A note on the existence of stable vector bundles on Enriques surfaces
    Nuer, Howard
    SELECTA MATHEMATICA-NEW SERIES, 2016, 22 (03): : 1117 - 1156
  • [37] A note on the existence of stable vector bundles on Enriques surfaces
    Howard Nuer
    Selecta Mathematica, 2016, 22 : 1117 - 1156
  • [38] On the classification of complex vector bundles of stable rank
    Banica, Constantin
    Putinar, Mihai
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2006, 116 (03): : 271 - 291
  • [39] On the classification of complex vector bundles of stable rank
    Constantin Banica
    Mihai Putinar
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2006, 116 : 271 - 291
  • [40] Geodesic orbit metrics in a class of homogeneous bundles over real and complex Stiefel manifolds
    Andreas Arvanitoyeorgos
    Nikolaos Panagiotis Souris
    Marina Statha
    Geometriae Dedicata, 2021, 215 : 31 - 50