Intelligent deep model based on convolutional neural network's and multi-layer perceptron to classify cardiac abnormality in diabetic patients

被引:0
|
作者
Saraswat, Monika [1 ]
Wadhwani, A. K. [1 ]
Wadhwani, Sulochana [1 ]
机构
[1] Madhav Inst Sci & Technol, Dept Elect Engn, Gwalior 474005, MP, India
关键词
Convolutional neural networks (CNN); Diabetes mellitus; Electrocardiogram (ECG); MLP; AUTOMATED DETECTION;
D O I
10.1007/s13246-024-01444-7
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The ECG is a crucial tool in the medical field for recording the heartbeat signal over time, aiding in the identification of various cardiac diseases. Commonly, the interpretation of ECGs necessitates specialized knowledge. However, this paper explores the application of machine learning algorithms and deep learning algorithm to autonomously identify cardiac diseases in diabetic patients in the absence of expert intervention. Two models are introduced in this study: The MLP model effectively distinguishes between individuals with heart diseases and those without, achieving a high level of accuracy. Subsequently, the deep CNN model further refines the identification of specific cardiac conditions. The PTB-Diagnostic ECG dataset commonly used in the field of biomedical signal processing and machine learning, particularly for tasks related to electrocardiogram (ECG) analysis. a widely recognized dataset in the field, is employed for training, testing, and validation of both the MLP and CNN models. This dataset comprises a diverse range of ECG recordings, providing a comprehensive representation of cardiac conditions. The proposed models feature two hidden layers with weights and biases in the MLP, and a three-layer CNN, facilitating the mapping of ECG data to different disease classes. The experimental results demonstrate that the MLP and deep CNN based models attain accuracy levels of up to 90.0% and 98.35%, and sensitivity 97.8%, 95.77%, specificity 88.9%, 96.3% F1-Score 93.13%, 95.84% respectively. These outcomes underscore the efficacy of deep learning approaches in automating the diagnosis of cardiac diseases through ECG analysis, showcasing the potential for accurate and efficient healthcare solutions.
引用
收藏
页码:1245 / 1258
页数:14
相关论文
共 50 条
  • [21] Hybrid neural network based on models of multi-layer perceptron and adaptive resonance theory
    Gavrilov, AV
    Korus 2005, Proceedings, 2005, : 604 - 606
  • [22] Application of a multi-layer convolutional neural network model to classify major insect pests in stored rice detected by an acoustic device
    Balingbing, Carlito B.
    Kirchner, Sascha
    Siebald, Hubertus
    Kaufmann, Hans-Hermann
    Gummert, Martin
    Van Hung, Nguyen
    Hensel, Oliver
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2024, 225
  • [23] Optimization of a multi-layer perceptron neural network for stock market forecasting
    Chaudhry, GM
    Guizani, M
    COMPUTER APPLICATIONS IN INDUSTRY AND ENGINEERING, 2001, : 142 - 145
  • [24] Extraction of voltage harmonics using multi-layer perceptron neural network
    Mehmet Tümay
    M. Emin Meral
    K. Çağatay Bayindir
    Neural Computing and Applications, 2008, 17 : 585 - 593
  • [25] Exploratory Test Oracle using Multi-Layer Perceptron Neural Network
    Makondo, Wellington
    Nallanthighal, Raghava
    Mapanga, Innocent
    Kadebu, Prudence
    2016 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2016, : 1166 - 1171
  • [26] FPGA acceleration on a multi-layer perceptron neural network for digit recognition
    Westby, Isaac
    Yang, Xiaokun
    Liu, Tao
    Xu, Hailu
    JOURNAL OF SUPERCOMPUTING, 2021, 77 (12): : 14356 - 14373
  • [27] Cluster Membership of Galaxies Using Multi-Layer Perceptron Neural Network
    Hashimoto, Yasuhiro
    Liu, Cheng-Han
    UNIVERSE, 2022, 8 (07)
  • [28] Assembling engineering knowledge in a modular multi-layer perceptron neural network
    Jansen, WJ
    Diepenhorst, M
    Nijhuis, JAG
    Spaanenburg, L
    1997 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, 1997, : 232 - 237
  • [29] Carbonate texture identification using multi-layer perceptron neural network
    Fociro, Oltion
    Fociro, Ana
    Muci, Redi
    Skrame, Klodian
    Pekmezi, Jeton
    Mezini, Mario
    OPEN GEOSCIENCES, 2023, 15 (01):
  • [30] Human Gait Recognition using Neural Network Multi-Layer Perceptron
    Mohammed, Faisel Ghazi
    Eesee, Waleed Khaled
    JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES, 2019, 14 (03): : 234 - 244