A Comparative Study of Graph Neural Networks for Shape Classification in Neuroimaging

被引:0
|
作者
Shehata, Nairouz [1 ]
Bain, Wulfie [1 ]
Glocker, Ben [1 ]
机构
[1] Imperial Coll London, Dept Comp, London, England
关键词
Shape classification; graph neural networks; brain structures; 3D mesh data;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph neural networks have emerged as a promising approach for the analysis of non-Euclidean data such as meshes. In medical imaging, mesh-like data plays an important role for modelling anatomical structures, and shape classification can be used in computer aided diagnosis and disease detection. However, with a plethora of options, the best architectural choices for medical shape analysis using GNNs remain unclear. We conduct a comparative analysis to provide practitioners with an overview of the current state-of-the-art in geometric deep learning for shape classification in neuroimaging. Using biological sex classification as a proof-of-concept task, we find that using FPFH as node features substantially improves GNN performance and generalisation to out-of-distribution data; we compare the performance of three alternative convolutional layers; and we reinforce the importance of data augmentation for graph based learning. We then confirm these results hold for a clinically relevant task, using the classification of Alzheimer's disease.
引用
收藏
页码:160 / 171
页数:12
相关论文
共 50 条
  • [21] A comparative study on polyp classification using convolutional neural networks
    Patel, Krushi
    Li, Kaidong
    Tao, Ke
    Wang, Quan
    Bansal, Ajay
    Rastogi, Amit
    Wang, Guanghui
    PLOS ONE, 2020, 15 (07):
  • [22] Semisupervised Graph Neural Networks for Traffic Classification in Edge Networks
    Yang, Yang
    Lyu, Rui
    Gao, Zhipeng
    Rui, Lanlan
    Yan, Yu
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2023, 2023
  • [24] Imbalance Node Classification with Graph Neural Networks (GNN): A Study on a Twitter Dataset
    Kika, Alda
    Ceni, Arber
    Collaku, Denada
    Loka, Emiranda
    Bozo, Ledia
    Hoxha, Klesti
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (11) : 1374 - 1379
  • [25] Polynomial-based graph convolutional neural networks for graph classification
    Luca Pasa
    Nicolò Navarin
    Alessandro Sperduti
    Machine Learning, 2022, 111 : 1205 - 1237
  • [26] Active and Semi-Supervised Graph Neural Networks for Graph Classification
    Xie, Yu
    Lv, Shengze
    Qian, Yuhua
    Wen, Chao
    Liang, Jiye
    IEEE TRANSACTIONS ON BIG DATA, 2022, 8 (04) : 920 - 932
  • [27] Differentially Private Graph Neural Networks for Whole-Graph Classification
    Mueller, Tamara T.
    Paetzold, Johannes C.
    Prabhakar, Chinmay
    Usynin, Dmitrii
    Rueckert, Daniel
    Kaissis, Georgios
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (06) : 7308 - 7318
  • [28] Two-Stage Training of Graph Neural Networks for Graph Classification
    Manh Tuan Do
    Noseong Park
    Kijung Shin
    Neural Processing Letters, 2023, 55 : 2799 - 2823
  • [29] Two-Stage Training of Graph Neural Networks for Graph Classification
    Do, Manh Tuan
    Park, Noseong
    Shin, Kijung
    NEURAL PROCESSING LETTERS, 2023, 55 (03) : 2799 - 2823
  • [30] Revisiting Attention-Based Graph Neural Networks for Graph Classification
    Tao, Ye
    Li, Ying
    Wu, Zhonghai
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XVII, PPSN 2022, PT I, 2022, 13398 : 442 - 458