Spin-torque ferromagnetic resonance based on current-induced impedance

被引:0
|
作者
Kobayashi, Yuta [1 ]
Itoh, Tomoya [1 ]
Hisatomi, Ryusuke [1 ,2 ,3 ]
Moriyama, Takahiro [2 ,3 ,4 ]
Shiota, Yoichi [1 ,2 ]
Fan, Xin [5 ]
Ono, Teruo [1 ]
机构
[1] Kyoto Univ, Inst Chem Res, Uji, Kyoto 6110011, Japan
[2] Kyoto Univ, Ctr Spintron Res Network, Uji, Kyoto 6110011, Japan
[3] Japan Sci & Technol Agcy, PRESTO, Kawaguchi, Saitama 3220012, Japan
[4] Nagoya Univ, Dept Mat Phys, Nagoya 4648603, Japan
[5] Univ Denver, Dept Phys & Astron, Denver, CO 80210 USA
基金
美国国家科学基金会;
关键词
ORBIT TORQUES; CONVERSION; SYMMETRY;
D O I
10.1063/5.0222114
中图分类号
O59 [应用物理学];
学科分类号
摘要
Spin-torque ferromagnetic resonance (ST-FMR) has been widely used for measuring damping-like spin-orbit torques in magnetic bilayers. Typically, the ratio between the damping-like and field-like spin-orbit torques are extrapolated based on the ferromagnetic resonance line shapes. However, when the field-like spin-orbit torque is unknown, the line shape analysis may lead to errors in extrapolating the damping-like spin-orbit torque. Here, we propose a modified version of the ST-FMR that allows extrapolation of both damping-like and field-like torques independently. By introducing an alternating current to the sample, the RF impedance is modulated, allowing detection via the reflected microwave. We show that the extrapolated field-like and damping-like torques in Py/Pt samples are consistent with the technique measuring current-induced linewidth and resonance field change but have much better signal-to-noise ratio. Our proposed method paves a way for more accurate measurement of spin-orbit torques.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Highly accurate evaluation of spin-torque efficiency by measuring in-plane angular dependence of spin-torque ferromagnetic resonance
    Horaguchi, Taisuke
    Matsuo, Mamoru
    Nozaki, Yukio
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2020, 505
  • [22] Transverse and Longitudinal Spin-Torque Ferromagnetic Resonance for Improved Measurement of Spin-Orbit Torque
    Karimeddiny, Saba
    Mittelstaedt, Joseph A.
    Buhrman, Robert A.
    Ralph, Daniel C.
    PHYSICAL REVIEW APPLIED, 2020, 14 (02):
  • [23] Influence of inverse spin Hall effect in spin-torque ferromagnetic resonance measurements
    Kondou, Kouta
    Sukegawa, Hiroaki
    Kasai, Shinya
    Mitani, Seiji
    Niimi, Yasuhiro
    Otani, YoshiChika
    APPLIED PHYSICS EXPRESS, 2016, 9 (02)
  • [24] Spin-torque driven ferromagnetic resonance of Co/Ni synthetic layers in spin valves
    Chen, W.
    Beaujour, J. -M. L.
    de Loubens, G.
    Kent, A. D.
    Sun, J. Z.
    APPLIED PHYSICS LETTERS, 2008, 92 (01)
  • [25] Nonlinear current resonance in a spin-torque diode with planar magnetization
    Kulagin, N. E.
    Skirdkov, P. N.
    Popkov, A. F.
    Zvezdin, K. A.
    Lobachev, A. V.
    LOW TEMPERATURE PHYSICS, 2017, 43 (06) : 708 - 714
  • [26] Evaluation of Spin Hall Angle and Spin Diffusion Length by Using Spin Current-Induced Ferromagnetic Resonance
    Kondou, Kouta
    Sukegawa, Hiroaki
    Mitani, Seiji
    Tsukagoshi, Kazuhito
    Kasai, Shinya
    APPLIED PHYSICS EXPRESS, 2012, 5 (07)
  • [27] Spin-Pumping-Free Determination of Spin-Orbit Torque Efficiency from Spin-Torque Ferromagnetic Resonance
    Okada, Atsushi
    Takeuchi, Yutaro
    Furuya, Kaito
    Zhang, Chaoliang
    Sato, Hideo
    Fukarni, Shunsuke
    Ohno, Hideo
    PHYSICAL REVIEW APPLIED, 2019, 12 (01)
  • [28] Coexistence of low-frequency spin-torque ferromagnetic resonance and unidirectional spin Hall magnetoresistance
    Aoki, Motomi
    Shigematsu, Ei
    Ohshima, Ryo
    Shinjo, Teruya
    Shiraishi, Masashi
    Ando, Yuichiro
    PHYSICAL REVIEW B, 2021, 104 (09)
  • [29] Current-induced Rashba spin orbit torque in silicene
    Chen, Ji
    Peng, Yingzi
    Zhou, Jie
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2017, 432 : 554 - 558
  • [30] Theory of spin-torque ferrimagnetic resonance
    Kim, Seok-Jong
    Lee, Dong-Kyu
    Oh, Se-Hyeok
    Koo, Hyun Cheol
    Lee, Kyung-Jin
    PHYSICAL REVIEW B, 2021, 104 (02)