Triple-function Mn regulation of NiFe (oxy)hydroxide for oxygen evolution reaction

被引:5
|
作者
Wan, Hui [1 ,2 ]
Xie, Meng-Yuan [1 ]
Li, Bo [1 ]
Nie, Jian-Hang [1 ]
Huang, Tao [1 ]
Li, Lei [1 ]
Shi, Jing-Hui [1 ]
Xian, Ming-Hua [1 ]
Huang, Jia-Rong [1 ]
Hu, Wangyu [3 ]
Huang, Gui-Fang [1 ]
Gao, Fei [4 ]
Huang, Wei-Qing [1 ]
机构
[1] Hunan Univ, Sch Phys & Elect, Dept Appl Phys, Changsha 410082, Peoples R China
[2] Changsha Univ, Sch Mat & Environm Engn, Changsha 410082, Peoples R China
[3] Hunan Univ, Coll Mat Sci & Engn, Changsha 410082, Peoples R China
[4] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA
关键词
Electrocatalysts; Triple-function; Heteroatoms adjusting; DFT; Oxygen evolution reaction; LAYERED DOUBLE HYDROXIDE; ELECTRONIC-STRUCTURE; HIGHLY-EFFICIENT; ELECTROCATALYSTS; IRON; NANOSHEETS; CATALYSTS; INSIGHT;
D O I
10.1016/j.jmst.2024.04.026
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Transition metal (oxy)hydroxides are potential oxygen evolution reaction (OER) electrocatalysts; however, simultaneously modulating multiple factors to enhance their performance is a grand challenge. Here, we report an incorporating heteroatom strategy via one-step hydrothermal approach to adjust more than one factor of Mn-doped NiFe (oxy)hydroxide (Mn-NiFeOOH/LDH) heterojunction. Mn doping regulates heterojunction morphology (reducing nanoparticles and becoming thinner and denser nanosheets), Ni/Fe ratio and valence states (Ni2 + , Ni3 + , and Ni3 +e) of Ni ions. The former could effectively increase surface active sites, and the latter two reduce the content of Fe in the Mnx -NiFeOOH/LDH heterojunction, enabling more Ni2 + convert to Ni3 + /3 +A that have higher intrinsic OER activity. As a result, the first-rank Mn-NiFeOOH/LDH with ultra-low overpotential of 185 mV@20 mA cm-2 and 296 mV@500 mA cm-2 , and the improved OER performance are outdo to those of commercial RuO2 catalyst for OER. Moreover, the Mn-NiFeOOH/LDH affords the earliest initial potential (1.392 V vs. RHE), corresponds to a recorded low overpotential (162 mV). Based on the density functional theory (DFT), Mn dopants can alter intermediate adsorption energy and effectively decrease *OOH's energy barrier. This research exhibits a feasible strategy to design low cost electrocatalysts and provide new possibilities for future industrialization. (c) 2024 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [41] NiFe-Layered Double Hydroxide Synchronously Activated by Heterojunctions and Vacancies for the Oxygen Evolution Reaction
    Luo, Yang
    Wu, Yinghong
    Wu, Donghai
    Huang, Chao
    Xiao, Dezhi
    Chen, Houyang
    Zheng, Shili
    Chu, Paul K.
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (38) : 42850 - 42858
  • [42] NiFe layered double hydroxide nanosheet arrays for efficient oxygen evolution reaction in alkaline media
    Huang, Feng
    Yao, Bingqing
    Huang, Yizhong
    Dong, ZhiLi
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (51) : 21725 - 21735
  • [43] Self-templating synthesis of hollow NiFe hydroxide nanospheres for efficient oxygen evolution reaction
    Jia, Dandan
    Gao, Hongyi
    Zhao, Jie
    Xing, Liwen
    Chen, Xiao
    Huang, Xiubing
    Dang, Rui
    Wang, Ge
    ELECTROCHIMICA ACTA, 2020, 357
  • [44] NiFe-layered double hydroxide arrays for oxygen evolution reaction in fresh water and seawater
    Dong, Guofa
    Xie, Fengyan
    Kou, Fangxia
    Chen, Tingting
    Wang, Fengyun
    Zhou, Yingwu
    Wu, Kechen
    Du, Shaowu
    Fang, Ming
    Ho, Johnny C.
    MATERIALS TODAY ENERGY, 2021, 22
  • [45] NiFe hydroxide nanosheet synthesized by in-situ chelation for highly efficient oxygen evolution reaction
    Peng, Jiehai
    Zhang, Lei
    Song, Manxin
    Zhang, Wei
    Peng, Kun
    MATERIALS CHEMISTRY AND PHYSICS, 2021, 258
  • [46] Deciphering the Exceptional Performance of NiFe Hydroxide for the Oxygen Evolution Reaction in an Anion Exchange Membrane Electrolyzer
    Wang, Li
    Saveleva, Viktoriia A.
    Eslamibidgoli, Mohammad J.
    Antipin, Denis
    Bouillet, Corinne
    Biswas, Indro
    Gago, Aldo S.
    Hosseiny, Seyed S.
    Gazdzicki, Pawel
    Eikerling, Michael H.
    Savinova, Elena R.
    Friedrich, K. Andreas
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (02) : 2221 - 2230
  • [47] Ce Hydroxide-Interfaced NiFe Sulfide Electrocatalyst with Improved Performance for the Oxygen Evolution Reaction
    Khan, Muhammad Afsar
    Li, Chongzhi
    Mei, Shaowei
    Chishti, Aadil Nabi
    Lu, Fei
    Zhou, Min
    LANGMUIR, 2023, 40 (01) : 696 - 703
  • [48] Insight into the amorphous nickel-iron (oxy)hydroxide catalyst for efficient oxygen evolution reaction
    Liao, Hanxiao
    Tan, Pengfei
    Dong, Rui
    Jiang, Min
    Hu, Xiaoyue
    Lu, Lili
    Wang, Yuan
    Liu, Hongqin
    Liu, Yong
    Pan, Jun
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 591 : 307 - 313
  • [49] A novel septenary high-entropy (oxy)hydroxide electrocatalyst for boosted oxygen evolution reaction
    Zhang, Lingjie
    Fan, Fangshi
    Song, Xiaomin
    Cai, Weiwei
    Ren, Jie
    Yang, Hui
    Bao, Ningzhong
    JOURNAL OF MATERIOMICS, 2024, 10 (02) : 348 - 354
  • [50] Quantum Chemical Modeling of Oxygen Evolution Reaction Pathways Mediated by Metal (Oxy)hydroxide Complexes
    Ekanayake, Niranji Thilini
    Ahmadi, Shideh
    Mosey, Nicholas J.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (02): : 1345 - 1354