Predicting daily maximum temperature over Andhra Pradesh using machine learning techniques

被引:0
|
作者
Velivelli, Sambasivarao [1 ]
Satyanarayana, G. Ch. [1 ]
Ali, M. M. [1 ,2 ]
机构
[1] Koneru Lakshmaiah Educ Fdn, Ctr Atmospher Sci, Dept Elect & Commun Engn, Guntur, India
[2] Andhra Pradesh State Disaster Management Author AP, Guntur, India
关键词
SUPPORT VECTOR REGRESSION; CLIMATE-CHANGE; RANDOM FORESTS; HEAT WAVES; IMPACT; WIND; PERFORMANCE; RESOURCES; WEATHER; DESIGN;
D O I
10.1007/s00704-024-05146-8
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Surface Air Temperature (SAT) predictions, typically generated by Global Climate Models (GCMs), carry uncertainties, particularly across different greenhouse gas emission scenarios. Machine Learning (ML) techniques can be employed to forecast long-term temperature variations, although this is a challenging endeavour with few drawbacks, such as the influence of scenarios involving greenhouse gas emissions. Therefore, the present study utilized multiple ML approaches such as Artificial Neural Networks (ANN), multiple linear regression, support vector machine and random forest, along with various daily predicted results of GCMs from Coupled Model Intercomparison Project Phase 6 as predictors and the "India Meteorological Department's" Maximum SAT (MSAT) as the predictand, to predict daily MSAT in the months of March, April and May (MAM) over Andhra Pradesh (AP) for the period 1981-2022. The results show that ANN outperforms other ML techniques in predicting daily MSAT, with a root mean square error of 1.41, an index of agreement of 0.89 and a correlation coefficient of 0.81. The spatial distribution of hot and heat wave days indicates that the Multiple Model Mean (MMM) underestimates these occurrences, with a minimum bias of 9 and 6 days, respectively. In contrast, the ANN model exhibits much smaller biases, with a maximum underestimation of 3 hot and 2 heat wave days. These findings demonstrate that MMM does not capture the maximum temperatures well, resulting in poor predictability. Further, future temperature projections were analysed from 2023 to 2050, which display a gradual increase in mean MSAT during MAM over AP. This research demonstrates the potential of ML techniques to enhance temperature forecasting accuracy, offering valuable insights for climate modeling and adaptation. The results are crucial for stakeholders in agriculture, health, energy, water resources, socio-economic planning, and urban development, aiding in informed decision-making and improving resilience to climate change impacts.
引用
收藏
页码:8567 / 8585
页数:19
相关论文
共 50 条
  • [31] Stepwise extreme learning machine for statistical downscaling of daily maximum and minimum temperature
    Mahsa MoradiKhaneghahi
    Taesam Lee
    Vijay P. Singh
    Stochastic Environmental Research and Risk Assessment, 2019, 33 : 1035 - 1056
  • [32] Reconstructing Daily Discharge in a Megadelta Using Machine Learning Techniques
    Hung Vo Thanh
    Doan Van Binh
    Kantoush, Sameh A.
    Nourani, Vahid
    Saber, Mohamed
    Lee, Kang-Kun
    Sumi, Tetsuya
    WATER RESOURCES RESEARCH, 2022, 58 (05)
  • [33] Predicting students' performance in distance learning using machine learning techniques
    Kotsiantis, S
    Pierrakeas, C
    Pintelas, P
    APPLIED ARTIFICIAL INTELLIGENCE, 2004, 18 (05) : 411 - 426
  • [34] Predicting the Curie temperature of ferromagnets using machine learning
    Nelson, James
    Sanvito, Stefano
    PHYSICAL REVIEW MATERIALS, 2019, 3 (10)
  • [35] Predicting wax deposition using robust machine learning techniques
    Amar, Menad Nait
    Ghahfarokhi, Ashkan Jahanbani
    Ng, Cuthbert Shang Wui
    PETROLEUM, 2022, 8 (02) : 167 - 173
  • [36] Modeling and predicting US recessions using machine learning techniques
    Vrontos, Spyridon D.
    Galakis, John
    Vrontos, Ioannis D.
    INTERNATIONAL JOURNAL OF FORECASTING, 2021, 37 (02) : 647 - 671
  • [37] Predicting ESG Controversies in Banks Using Machine Learning Techniques
    Dipierro, Anna Rita
    Barrionuevo, Fernando Jimenez
    Toma, Pierluigi
    CORPORATE SOCIAL RESPONSIBILITY AND ENVIRONMENTAL MANAGEMENT, 2025,
  • [38] Predicting Recidivism to Drug Distribution using Machine Learning Techniques
    Butsara, Nuttawit
    Athonthitichot, Panchan
    Jodpimai, Pichai
    2019 17TH INTERNATIONAL CONFERENCE ON ICT AND KNOWLEDGE ENGINEERING (ICT&KE), 2019, : 165 - 169
  • [39] Predicting Market Performance Using Machine and Deep Learning Techniques
    El Mahjouby, Mohamed
    Bennani, Mohamed Taj
    Lamrini, Mohamed
    Bossoufi, Badre
    Alghamdi, Thamer A. H.
    El Far, Mohamed
    IEEE ACCESS, 2024, 12 : 82033 - 82040
  • [40] Predicting Success of Bollywood Movies Using Machine Learning Techniques
    Jaiswal, Sameer Ranjan
    Sharma, Divyansh
    COMPUTE'17: PROCEEDINGS OF THE 10TH ANNUAL ACM INDIA COMPUTE CONFERENCE, 2017, : 121 - 124